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Abstract Let R denote any of the following classes: upper (lower) semi-Fredholm
operators, Fredholm operators, upper (lower) semi-Weyl operators, Weyl operators,
upper (lower) semi-Browder operators, Browder operators. For a bounded linear oper-
ator T on a Banach space X we prove that T = TM ⊕ TN with TM ∈ R and TN
quasinilpotent (nilpotent) if and only if T admits a generalized Kato decomposition
(T is of Kato type) and 0 is not an interior point of the corresponding spectrum
σR(T ) = {λ ∈ C : T − λ /∈ R}. Moreover, we prove that if T − λ0 admits a general-
ized Kato decomposition, then σR(T ) does not cluster at λ0 if and only if λ0 is not an
interior point of σR(T ). As a consequence we get several results on cluster points of
essential spectra. In that way we extend some results regarding the approximate point
spectrum and the surjective spectrum given by Aiena and Rosas (J. Math. Anal. Appl.
279:180–188, 2003), as well as results given by Jiang and Zhong (J. Math. Anal. Appl.
356:322–327, 2009) to the cases of essential spectra.
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mladvlad@mts.rs

Miloš D. Cvetković
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1 Introduction

Given a Banach space X and an operator T ∈ L(X), T is said to be Drazin invertible,
if there exists S ∈ L(X) and some m ∈ N such that

Tm = TmST, ST S = S, ST = T S.

It is a classical result that necessary and sufficient for T to be Drazin invertible is
T = T1 ⊕ T2, where T1 is invertible and T2 nilpotent; see [18,24]. Drazin invertible
operators and Fredholm operators were generalized to B-Fredholm operators by M.
Berkani [3]. According to [3, Theorem 2.7] T is B-Fredholm if and only if T = T1⊕T2
with T1 Fredholm and T2 nilpotent. For more details about the B-Fredholm operators
we refer the reader to [3–6].

It is said that T ∈ L(X) admits a Kato decomposition or T is of Kato type if
there exist two closed T -invariant subspaces M and N such that X = M ⊕ N , TM is
Kato and TN is nilpotent. T. Kato proved in [17] that semi-Fredholm operators admit
a Kato decomposition with N finite-dimensional. It is not difficult to see that every
B-Fredholm operator admits a Kato decomposition. In [22] Labrouse introduced and
studied quasi-Fredholm operators in the context of a Hilbert space. He showed that
quasi-Fredholm operators are precisely those admitting a Kato decomposition.

If we require that TN is quasinilpotent instead of nilpotent in the definition of the
Kato decomposition, then it leads us to the generalizedKato decomposition. Operators
that admit a generalized Kato decomposition were firstly studied by M. Mbekhta in
[26] and he called them pseudo-Fredholm operators.

J. Koliha extended the concept of Drazin invertibility and introduced generalized
Drazin invertible operators [19]. According to his work, an operator T ∈ L(X) is gen-
eralized Drazin invertible if and only if 0 is not an accumulation point of the spectrum
of T , and it is exactly when T = T1 ⊕ T2 with T1 invertible and T2 quasinilpotent.
The class of generalized Drazin invertible operators were extended [12] in a way that
it was considered the class of operators that can be represented as the direct sum of
a bounded below (surjective) operator and a quasinilpotent operator. Very recently,
pseudo B-Fredholm and pseudo B-Weyl operators were defined in a sense that T is
pseudo B-Fredholm (resp. pseudo B-Weyl) if T = T1 ⊕ T2, where T1 is Fredholm
(resp. Weyl) and T2 is quasinilpotent [7,29].

In accordance with these observations it is natural to study various types of the
direct sums. Namely, let R denote any of the following classes: upper (lower) semi-
Fredholm operators, Fredholm operators, upper (lower) semi-Weyl operators, Weyl
operators, upper (lower) semi-Browder operators, Browder operators, bounded below
operators, surjective operators, invertible operators. The main objective of this article
is to provide necessary and sufficient conditions for an operator T ∈ L(X) to be the
direct sum of an operator T1 ∈ R and a quasinilpotent (nilpotent) operator T2.

In Sect. 2 we set up terminology and recall necessary facts. Our main results are
established in Sects. 3 and 4. Given an operator T ∈ L(X), X is a Banach space, we
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prove that T = TM ⊕ TN with TM ∈ R and TN quasinilpotent (TN nilpotent) if and
only if T admits a generalized Kato decomposition (T is of Kato type) and 0 is not an
interior point of σR(T ) = {λ ∈ C : T − λ /∈ R} (see Theorems 3.4, 3.6, 3.7, 3.9, 4.1
below). Moreover, we prove that if T − λ0 admits a generalized Kato decomposition,
then σR(T ) does not cluster at λ0 if and only if λ0 is not an interior point of σR(T ).
In that way we extend to the cases of essential spectra the result given by Jiang and
Zhong [13, Theorem 3.5 and Theorem 3.9] where they show that if T − λ0 admits a
GKD, λ0 is not an accumulation point of its approximate point (surjective) spectrum
if and only if λ0 is not an interior point of the approximate point (surjective) spectrum
of T (see Corollary 3.5 below). Also, we extend to the cases of essential spectra, as
well the approximate point and surjective spectrum, the result of Aiena and Rosas [2,
Theorem 2.9] (the result of Jiang and Zhong [13, Theorem 3.8]) which is equivalent
to the following assertion: if 0 is a boundary point of σ(T ), then T is of Kato type
(T admits a GKD) if and only if T is Drazin (generalized Drazin) invertible, that
is T = TM ⊕ TN where 0 /∈ σ(TM ) and TN nilpotent (TN quasinilpotent) (see
Corollary 4.2 (Corollary 3.12) below).

Section 5 contains some applications.We prove that every boundary point of σR(T ),
where R is any of the classes mentioned above, which is also an accumulation point
of σR(T ) belongs to the generalized Kato spectrum. In particular, if R is the class of
invertible operators we obtain [13, Corollary 3.6]. If T ∈ L(X), let σgDR(T ) be the
set of all λ ∈ C such that T −λ can not be represented as the direct sum of an operator
from the class R and a quasinilpotent operator. We show that the connected hull of the
spectrum σgDR(T ) coincide with the connected hull of the generalized Kato spectrum
for every classR. In particular, the connected hulls of the generalized Drazin spectrum
and the generalized Kato spectrum are equal and as a consequence of this fact we get
Theorem 3 in [14]. Moreover, the connected hulls of the B-Fredholm, B-Weyl, Drazin
and of the Kato type spectrum are equal. Also, from the condition σR(T ) = ∂σR(T ) =
acc σR(T ) we derive σgK (T ) = σKt (T ) = σeK (T ) = σR(T ) = σgDR(T ) for every
aforementioned class R.

2 Preliminaries

Let N (N0) denote the set of all positive (non-negative) integers, and let C denote the
set of all complex numbers. Let X be an infinite dimensional Banach space and let
L(X) be the Banach algebra of all bounded linear operators acting on X . The group
of all invertible operators is denoted by L(X)−1. Given T ∈ L(X), we denote by
N (T ), R(T ) and σ(T ), the kernel, the range and the spectrum of T , respectively. In
addition, α(T ) and β(T ) will stand for nullity and defect of T . The space of bounded
linear functionals on X is denoted by X ′. If K ⊂ C, then ∂K is the boundary of K ,
acc K is the set of accumulation points of K , iso K = K\acc K and int K is the set
of interior points of K . For λ0 ∈ C, the open disc, centered at λ0 with radius ε in C,
is denoted by D(λ0, ε).

Recall that T is said to be nilpotent when T n = 0 for some n ∈ N, while T is
quasinilpotent if ‖T n‖1/n → 0, that is T − λ ∈ L(X)−1 for all complex λ �= 0. An
operator T ∈ L(X) is bounded below if there exists some c > 0 such that c‖x‖ ≤
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‖T x‖ for every x ∈ X . LetM(X) denote the set of all bounded below operators, and
let Q(X) denote the set of all surjective operators. The approximate point spectrum
of T ∈ L(X) is defined by

σap(T ) = {λ ∈ C : T − λ is not bounded below}

and the surjective spectrum is defined by

σsu(T ) = {λ ∈ C : T − λ is not surjective}.

An operator T ∈ L(X) is Kato if R(T ) is closed and N (T ) ⊂ R(T n), n ∈ N0. If
R(T ) is closed and α(T ) < ∞, then T ∈ L(X) is said to be upper semi-Fredholm.
An operator T ∈ L(X) is lower semi-Fredholm if β(T ) < ∞. The set of upper semi-
Fredholm operators (lower semi-Fredholm operators) is denoted by�+(X) (�−(X)).
If T is upper or lower semi-Fredholm operator then the index of T is defined as
ind(T ) = α(T ) − β(T ). An operator T is Fredholm if both α(T ) and β(T ) are finite.
We will denote by �(X) the set of Fredholm operators. The sets of upper semi-Weyl,
lower semiWeyl andWeyloperators are definedbyW+(X) = {T ∈ �+(X) : ind(T ) ≤
0},W−(X) = {T ∈ �−(X) : ind(T ) ≥ 0} and W(X) = {T ∈ �(X) : ind(T ) = 0},
respectively. B-Fredholm and B-Weyl operators were introduced and studied by M.
Berkani [3–5]. An operator T ∈ L(X) is said to be B-Fredholm (B-Weyl) if there is
n ∈ N such that R(T n) is closed and the restriction Tn ∈ L(R(T n)) of T to R(T n) is
Fredholm (Weyl). The B-Fredholm and the B-Weyl spectrum of T are defined by

σB�(T ) = {λ ∈ C : T − λ is not B-Fredholm},
σBW (T ) = {λ ∈ C : T − λ is not B-Weyl}, respectively.

Recall that T ∈ L(X) is said to be Riesz operator, if T −λ ∈ �(X) for every non-zero
λ ∈ C.

The ascent of T is defined as asc(T ) = inf{n ∈ N0 : N (T n) = N (T n+1)}, and
descent of T is defined as dsc(T ) = inf{n ∈ N0 : R(T n) = R(T n+1)}, where the
infimum over the empty set is taken to be infinity. An operator T ∈ L(X) is upper
semi-Browder if T is upper semi-Fredholm and asc(T ) < ∞. If T ∈ L(X) is lower
semi-Fredholm and dsc(T ) < ∞, then T is lower semi-Browder. LetB+(X) (B−(X))
denote the set of all upper (lower) semi-Browder operators. The set of Browder oper-
ators is defined by B(X) = B+(X) ∩ B−(X).

If M is a subspace of X such that T (M) ⊂ M, T ∈ L(X), it is said that M is
T -invariant. We define TM : M → M as TMx = T x, x ∈ M . If M and N are two
closed T -invariant subspaces of X such that X = M ⊕ N , we say that T is completely
reduced by the pair (M, N ) and it is denoted by (M, N ) ∈ Red(T ). In this case we
write T = TM ⊕ TN and say that T is the direct sum of TM and TN .

An operator T ∈ L(X) is said to admit a generalized Kato decomposition, abbre-
viated as GKD, if there exists a pair (M, N ) ∈ Red(T ) such that TM is Kato and TN
is quasinilpotent. A relevant case is obtained if we assume that TN is nilpotent. In this
case T is said to be of Kato type. An operator is said to be essentially Kato if it admits
a GKD (M, N ) such that N is finite-dimensional. If T is essentially Kato then TN is
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nilpotent, since every quasinilpotent operator on a finite dimensional space is nilpo-
tent. The classes �+(X), �−(X), �(X), B+(X), B−(X), B(X), W+(X), W−(X)

andW(X) belong to the class of essentially Kato operators [27, Theorem 16.21]. For
T ∈ L(X), the Kato spectrum, the essentially Kato spectrum, the Kato type spectrum
and the generalized Kato spectrum are defined by

σK (T ) = {λ ∈ C : T − λ is not Kato},
σeK (T ) = {λ ∈ C : T − λ is not essentially Kato},
σKt (T ) = {λ ∈ C : T − λ is not of Kato type},
σgK (T ) = {λ ∈ C : T − λ does not admit a GKD},

respectively. Clearly,

σgK (T ) ⊂ σKt (T ) ⊂ σeK (T ) ⊂ σK (T ) ⊂ σap(T ) ∩ σsu(T ). (2.1)

The quasinilpotent part H0(T ) of an operator T ∈ L(X) is defined by

H0(T ) =
{
x ∈ X : lim

n→+∞ ‖T nx‖1/n = 0

}
.

It is easy to verify that H0(T ) = {0} if T is bounded below. An operator T ∈ L(X) is
quasinilpotent if and only if H0(T ) = X [1, Theorem 1.68].

The analytical core of T , denoted by K (T ), is the set of all x ∈ X for which there
exist c > 0 and a sequence (xn)n in X satisfying

T x1 = x, T xn+1 = xn for all n ∈ N, ‖xn‖ ≤ cn‖x‖ for all n ∈ N.

If T is surjective, then K (T ) = X [1, Theorem 1.22].
An operator T ∈ L(X) is said to be generalized Drazin invertible, if there exists

B ∈ L(X) such that

T B = BT, BT B = B, T BT − T is quasinilpotent.

The generalized Drazin spectrum of T ∈ L(X) is defined by

σgD(T ) = {λ ∈ C : T − λ is not generalized Drazin invertible}.

The equivalent conditions to the existence of generalized Drazin inverse of a bounded
operator are collected in the following theorem.

Theorem 2.1 (see [8,19,20,25,28]) Let T ∈ L(X). The following conditions are
equivalent:

(i) T is generalized Drazin invertible;
(ii) There exists a bounded projection P on X which commutes with T such that

T + P is invertible and T P is quasinilpotent;
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(iii) 0 /∈ acc σ(T );
(iv) There is a bounded projection P on X such that R(P) = H0(T ) and N (T ) =

K (T );
(v) There exists (M, N ) ∈ Red(T ) such that TM is invertible and TN is quasinilpo-

tent;
(vi) X = K (T ) ⊕ H0(T ) with at least one of the component spaces closed.

For a subspace M of X its annihilator M⊥ is defined by

M⊥ = { f ∈ X ′ : f (x) = 0 for all x ∈ M}.

Recall that if M is closed, then

dimM⊥ = codim M. (2.2)

Let M and L be two subspaces of X and let

δ(M, L) = sup{dist (u, L) : u ∈ M, ‖u‖ = 1},

in the case that M �= {0}, otherwise we define δ({0}, L) = 0 for any subspace L . The
gap between M and L is defined by

δ̂(M, L) = max{δ(M, L), δ(L , M)}.

It is known that [27, corollary 10.10]

δ̂(M, L) < 1 �⇒ dimM = dimL . (2.3)

If M and L are closed subspaces of X , then [27, Theorem 10.8]

δ̂(M⊥, L⊥) = δ̂(M, L). (2.4)

Therefore, for closed subspaces M and L of X , according to (2.2), (2.3) and (2.4),
there is implication

δ̂(M, L) < 1 �⇒ codim M = codim L . (2.5)

We use the following notation.

R1 = �+(X) R2 = �−(X) R3 = �(X)

R4 = W+(X) R5 = W−(X) R6 = W(X)

R7 = B+(X) R8 = B−(X) R9 = B(X)

R10 = M(X) R11 = Q(X) R12 = L(X)−1
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The sets Ri , 1 ≤ i ≤ 12, are open in L(X) and contain L(X)−1 (for the openness
of the set of upper (lower) semi-Browder operators see [21, Satz 4]). The spectra
σRi (T ) = {λ ∈ C : T − λ /∈ Ri }, 1 ≤ i ≤ 12, are non-empty and compact subsets of
C. We write σR1(T ) = σ�+(T ), σR2(T ) = σ�−(T ), etc, and ρ�+(T ) = C\σ�+(T ),
ρ�−(T ) = C\σ�−(T ), etc. In particular, σR10(T ) = σap(T ), σR11(T ) = σsu(T ),
ρap(T ) = C\σap(T ) and ρsu(T ) = C\σsu(T ). We consider the following classes of
bounded linear operators:

gDRi =
{
T ∈ L(X) : there exists (M, N ) ∈ Red(T ) such that

TM ∈ Ri and TN is quasinilpotent

}
, 1 ≤ i ≤ 12.

If TN mentioned in this definition is nilpotent then it is said that T belongs to the class
DRi , 1 ≤ i ≤ 12. It is clear that Ri ⊂ DRi ⊂ gDRi , 1 ≤ i ≤ 12.

We shall say that T ∈ L(X) is generalized Drazin upper semi-Fredholm (resp.
generalized Drazin lower semi-Fredholm, generalized Drazin Fredholm, generalized
Drazin upper semi-Weyl, generalized Drazin lower semi-Weyl, generalized Drazin
Weyl, generalized Drazin bounded below, generalized Drazin surjective) if T ∈
gD�+(X) (resp. gD�−(X), gD�(X), gDW+(X), gDW−(X), gDW(X), gDM(X),
gDQ(X)). The reason for introducing these names is that all these classes generalize
the class of generalized Drazin invertible operators and, as we will see, may be char-
acterized in a similar way as the class of generalized Drazin invertible operators. We
remark that pseudo B-Fredholm operators and generalized Drazin Fredholm operators
coincide, as well as, pseudo B-Weyl operators and generalized DrazinWeyl operators.

The following technical lemma will be useful in the sequel.

Lemma 2.2 Let T ∈ L(X) and (M, N ) ∈ Red(T ). The following statements hold:

(i) T ∈ Ri if and only if TM ∈ Ri and TN ∈ Ri , 1 ≤ i ≤ 3 or 7 ≤ i ≤ 12, and in
that case ind(T ) = ind(TM ) + ind(TN );

(ii) If TM ∈ Ri and TN ∈ Ri , then T ∈ Ri , 4 ≤ i ≤ 6;
(iii) If T ∈ Ri and TN is Weyl, then TM ∈ Ri , 4 ≤ i ≤ 6.

Proof (i): From the equalities N (T ) = N (TM )⊕N (TN ) and R(T ) = R(TM )⊕R(TN )

it follows thatα(T ) = α(TM )+α(TN ) andβ(T ) = β(TM )+β(TN ). It implies that
α(T ) < ∞ if and only ifα(TM ) < ∞ andα(TN ) < ∞, and also,β(T ) < ∞ if and
only if β(TM ) < ∞ and β(TN ) < ∞. It is known that R(T ) is closed if and only
if R(TM ) and R(TN ) are closed [13, Lemma 3.3]. Therefore T is bounded below
(surjective, upper semi-Fredholm, lower semi-Fredholm) if and only if TM and TN
are bounded below (surjective, upper semi-Fredholm, lower semi-Fredholm), and
in that case ind(T ) = α(T ) − β(T ) = (α(TM ) + α(TN )) − (β(TM ) + β(TN )) =
ind(TM ) + ind(TM ).
Since N (T n) = N (T n

M ) ⊕ N (T n
N ), for every n ∈ N, we conclude that

asc(T ) < ∞ if and only if asc(TM ) < ∞ and asc(TN ) < ∞, with asc(T ) =
max{asc(TM ), asc(TN )}. Similarly, as R(T n) = R(T n

M ) ⊕ R(T n
N ), n ∈ N, we

get that dsc(T ) < ∞ if and only if dsc(TM ) < ∞ and dsc(TN ) < ∞, with
dsc(T ) = max{dsc(TM ), dsc(TN )}.

(ii): Follows from (i).
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(iii): Suppose that T ∈ W+(X) and that TN is Weyl. According to (i) it follows that
TM ∈ �+(X) and ind(TM ) = ind(TM ) + ind(TN ) = ind(T ) ≤ 0. Thus TM is
upper semi-Weyl. The cases i = 5 and i = 6 can be proved similarly. ��

3 Main Results

We start with the result which is proved in [30] using topological uniform descent.

Lemma 3.1 ([30], Lemma 2.4) If T ∈ L(X) admits a GKD(M, N ), then there exists
a positive constant ε > 0, such that

(i) T − λ is Kato for all 0 < |λ| < ε;
(ii) α(T − λ) = α(TM ) ≤ α(T ) for all 0 < |λ| < ε;
(iii) β(T − λ) = β(TM ) ≤ β(T ) for all 0 < |λ| < ε.

It is worth noticing that it can be also derived using the gap theory. Namely, let
T ∈ L(X) admit a GKD(M, N ). Then, for every 0 �= λ ∈ C it holds

α(T − λ) = α(TM − λ) + α(TN − λ) = α(TM − λ), (3.1)

since TN is quasinilpotent. Also, according to [27, Corollary 12.4], TM − λ is
Kato for all λ in a neighborhood of 0. From [27, Theorem 12.2] it follows that
limλ→0 δ̂(N (TM ), N (TM −λ)) = 0 and hence, there exists ε > 0 such that TM −λ is
Kato and δ̂(N (TM ), N (TM − λ)) < 1 for all |λ| < ε. Applying (2.3), for all |λ| < ε,
we obtain dimN (TM − λ) = dimN (TM ). Now, we use (3.1) and get the statement (ii)
of Lemma 3.1. The statement (iii) can be proved similarly by using the implication
(2.5).

The following proposition will be used frequently in this article, but we omit its
proof since it easily follows from Lemma 3.1 and [27, Lemma 20.9].

Proposition 3.2 Let T ∈ L(X). Then the following implications hold:

(i) If T is Kato and 0 ∈ acc ρ�+(T ) (0 ∈ acc ρ�−(T )), then T is upper (lower)
semi-Fredholm;

(ii) If T is Kato and 0 ∈ acc ρW+(T ) (0 ∈ acc ρW−(T )), then T is upper (lower)
semi-Weyl;

(iii) If T is Kato and 0 ∈ acc ρap(T ) (0 ∈ acc ρsu(T )), then T is bounded below
(surjective);

(iv) If T is Kato and 0 ∈ acc ρB+(T ) (0 ∈ acc ρB−(T )), then T is bounded below
(surjective).

Proposition 3.3 Let T ∈ L(X) and 1 ≤ i ≤ 12. If T belongs to the set gDRi , then
0 /∈ acc σRi (T ).

Proof Let (M, N ) ∈ Red(T ) such that TM ∈ Ri and TN is quasinilpotent. Since Ri

is open, there exists ε > 0 such that (T − λ)M = TM − λ ∈ Ri for |λ| < ε. On the
other hand, (T − λ)N = TN − λ ∈ L(X)−1 ⊂ Ri for every λ �= 0. Now by applying
Lemma 2.2 we obtain that T − λ ∈ Ri for 0 < |λ| < ε, and so 0 /∈ acc σRi (T ). ��
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We now state the first main result.

Theorem 3.4 Let T ∈ L(X) and 1 ≤ i ≤ 6. The following conditions are equivalent:

(i) There exists (M, N ) ∈ Red(T ) such that TM ∈ Ri and TN is quasinilpotent, that
is T ∈ gDRi ;

(ii) T admits a GKD and 0 /∈ acc σRi (T );
(iii) T admits a GKD and 0 /∈ int σRi (T );
(iv) There exists a projection P ∈ L(X) that commutes with T such that T + P ∈ Ri

and T P is quasinilpotent.

Proof (i) �⇒ (ii): Let T = TM ⊕ TN , where TM ∈ Ri and TN is quasinilpotent.
Then 0 /∈ acc σRi (T ) by Proposition 3.3. From [27, Theorem 16.21] it follows
that there exist two closed T -invariant subspaces M1 and M2 such that M =
M1 ⊕ M2, M2 is finite dimensional, TM1 is Kato and TM2 is nilpotent. We have
X = M1 ⊕ (M2 ⊕ N ), M2 ⊕ N is closed, TM2⊕N = TM2 ⊕ TN is quasinilpotent
and thus T admits the GKD (M1, M2 ⊕ N ).

(ii) �⇒ (iii): Clear.
(iii) �⇒ (i): Let i ∈ {1, 2, 3}. Assume that T admits a GKD and 0 /∈ int σRi (T ),

that is 0 ∈ acc ρRi (T ). Then there exists (M, N ) ∈ Red(T ) such that TM is
Kato and TN is quasinilpotent, and also, because of 0 ∈ acc ρRi (T ), according to
Lemma 2.2(i), it follows that 0 ∈ acc ρRi (TM ). From Proposition 3.2(i) it follows
that TM ∈ Ri , and so T ∈ gDRi .
Suppose that T admits a GKD and 0 /∈ int σW+(T ), i.e. 0 ∈ acc ρW+(T ). Then
there exists (M, N ) ∈ Red(T ) such that TM is Kato and TN is quasinilpotent.
We show that 0 ∈ acc ρW+(TM ). Let ε > 0. From 0 ∈ acc ρW+(T ) it follows
that there exists λ ∈ C such that 0 < |λ| < ε and T − λ ∈ W+(X). As
TN is quasinilpotent, TN − λ is invertible, and so, according to Lemma 2.2(iii),
we conclude that TM − λ ∈ W+(M), that is λ ∈ ρW+(TM ). Therefore, 0 ∈
acc ρW+(TM ) and from Proposition 3.2(ii) it follows that TM is upper semi-Weyl,
and so T ∈ gDW+(X). The cases i = 5 and i = 6 can be proved similarly.

(i) �⇒ (iv): Suppose that there exists (M, N ) ∈ Red(T ) such that TM ∈ Ri and
TN is quasinilpotent. Let P ∈ L(X) be a projection such that N (P) = M and
R(P) = N . Then T P = PT and every element x ∈ X may be represented as
x = x1 + x2, where x1 ∈ M and x2 ∈ N . Also,

‖(T P)nx‖ 1
n = ‖T n Px‖ 1

n = ‖(TN )nx2‖ 1
n → 0 (n → ∞),

since TN is quasinilpotent. We obtain H0(T P) = X , so T P is quasinilpotent.
Since (T + P)M = TM and (T + P)N = TN + IN ∈ L(N )−1, where IN is
identity on N , we have that (T + P)M ∈ Ri and (T + P)N ∈ Ri and hence,
T + P ∈ Ri by Lemma 2.2(i) and (ii).

(iv) �⇒ (i): Assume that there exists a projection P ∈ L(X) that commutes with T
such that T + P ∈ Ri and T P is quasinilpotent. Put N (P) = M and R(P) = N .
Then X = M ⊕ N , T (M) ⊂ M and T (N ) ⊂ N . For every x ∈ N we have

‖(TN )nx‖ 1
n = ‖T n Pnx‖ 1

n = ‖(T P)nx‖ 1
n → 0 (n → ∞),
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since T P is quasinilpotent. It follows that H0(TN ) = N and hence, TN is
quasinilpotent. It remains to prove that TM ∈ Ri . For i ∈ {1, 2, 3}, by
Lemma 2.2(i) we deduce that TM = (T + P)M ∈ Ri . Set i = 4. Since TN
is quasinilpotent, it follows that TN + IN is invertible, where IN is identity on
N . From T + P ∈ W+(X) and the decomposition

T + P = (T + P)M ⊕ (T + P)N = TM ⊕ (TN + IN ),

according to Lemma 2.2(iii), we conclude that TM ∈ W+(M). For i = 5 and
i = 6 we apply similar consideration. ��

Jiang and Zhong show in [13, Theorem 3.5 and Theorem 3.9] that if T −λ0 ∈ L(X)

admits a GKD, σap(T ) (σsu(T )) does not cluster at λ0 if and only if λ0 is not an interior
point of σap(T ) (σsu(T )). Corollary 3.5 extend this result to the cases of the essential
spectra,while inTheorems3.6 and3.7weprovide further conditions that are equivalent
to those mentioned above.

Corollary 3.5 Let T ∈ L(X) and 1 ≤ i ≤ 6. If T − λ0 admits a generalized Kato
decomposition, then σRi (T ) does not cluster at λ0 if and only if λ0 is not an interior
point of σRi (T ).

Proof Follows from the equivalence (ii)⇐⇒(iii) of Theorem 3.4. ��
Theorem 3.6 Let T ∈ L(X). The following conditions are equivalent:

(i) H0(T ) is closed and there exists a closed subspace M of X such that
(M, H0(T )) ∈ Red(T ) and T (M) is closed;

(ii) There exists (M, N ) ∈ Red(T ) such that TM is bounded below and TN is
quasinilpotent, that is T ∈ gDM(X);

(iii) T admits a GKD and 0 /∈ acc σap(T );
(iv) T admits a GKD and 0 /∈ int σap(T );
(v) There exists a bounded projection P on X which commutes with T such that

T + P is bounded below and T P is quasinilpotent;
(vi) There exists (M, N ) ∈ Red(T ) such that TM is upper semi-Browder and TN is

quasinilpotent, that is T ∈ gDB+(X);
(vii) T admits a GKD and 0 /∈ acc σB+(T );
(viii) T admits a GKD and 0 /∈ int σB+(T );
(ix) There exists a bounded projection P on X which commutes with T such that

T + P is upper semi-Browder and T P is quasinilpotent.
In particular, if T satisfies any of the conditions (i)–(ix), then the subspace N
in (ii) is uniquely determined and N = H0(T ).

Proof (i) �⇒ (ii): Suppose that H0(T ) is closed and that there exists a closed T -
invariant subspace M of X such that X = H0(T ) ⊕ M and T (M) is closed. For
N = H0(T ) we have that (M, N ) ∈ Red(T ) and H0(TN ) = N , which implies
that TN is quasinilpotent. From N (TM ) = N (T ) ∩ M ⊂ H0(T ) ∩ M = {0} it
follows that TM is injective and since R(TM ) = T (M) is a closed subspace in M ,
we conclude that TM is bounded below.
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(ii) �⇒ (i): Assume that there exists (M, N ) ∈ Red(T ) such that TM is bounded
below and TN is quasinilpotent. Then (M, N ) is a GKD for T , and so from [1,
Corollary 1.69] it follows that H0(T ) = H0(TM ) ⊕ H0(TN ) = H0(TM ) ⊕ N .
Since TM is bounded below, we get that H0(TM ) = {0} and hence H0(T ) = N .
Therefore, H0(T ) is closed and complementedwithM , (M, H0(T )) ∈ Red(T ),
and T (M) is closed because TM is bounded below.
The implications (ii) �⇒ (iii) and (vi) �⇒ (vii) can be proved analogously to
the proof of the implication (i) �⇒ (ii) in Theorem 3.4. The implications (iii)
�⇒ (iv) and (vii) �⇒ (viii) are clear.

(viii) �⇒ (ii): Let T admit a GKD and let 0 /∈ int σB+(T ), i.e. 0 ∈ acc ρB+(T ). There
exists (M, N ) ∈ Red(T ) such that TM is Kato and TN is quasinilpotent. From
0 ∈ acc ρB+(T ) it follows that 0 ∈ acc ρB+(TM ) according to Lemma 2.2(i).
From Proposition 3.2(iv) it follows that TM is bounded below, and hence T ∈
gDM(X).

(iv) �⇒ (ii): This implication can be proved by using Proposition 3.2(iii), analo-
gously to the proof of the implication (viii) �⇒ (ii).

(ii) �⇒ (vi): Follows from the fact that every bounded below operator is upper
semi-Browder.

The equivalences (v) ⇐⇒ (ii) and (vi) ⇐⇒ (ix) can be proved analogously to
the equivalence (i) ⇐⇒ (iv) in Theorem 3.4. ��

Theorem 3.7 For T ∈ L(X) the following conditions are equivalent:

(i) K (T ) is closed and there exists a closed subspace N of X such that N ⊂ H0(T )

and (K (T ), N ) ∈ Red(T );
(ii) There exists (M, N ) ∈ Red(T ) such that TM is surjective and TN is quasinilpo-

tent, that is T ∈ gDQ(X);
(iii) T admits a GKD and 0 /∈ acc σsu(T );
(iv) T admits a GKD and 0 /∈ int σsu(T );
(v) There exists a bounded projection P on X which commutes with T such that

T + P is surjective and T P is quasinilpotent;
(vi) There exists (M, N ) ∈ Red(T ) such that TM is lower semi-Browder and TN is

quasinilpotent, that is T ∈ gDB−(X);
(vii) T admits a GKD and 0 /∈ acc σB−(T );
(viii) T admits a GKD and 0 /∈ int σB−(T );
(ix) There exists a bounded projection P on X which commutes with T such that

T + P is lower semi-Browder and T P is quasinilpotent.
In particular, if T satisfies any of the conditions (i)–(ix), then the subspace M
in (ii) is uniquely determined and M = K (T ).

Proof (i) �⇒ (ii): Assume that K (T ) is closed and that there exists a closed T -
invariant subspace N , such that N ⊂ H0(T ) and X = K (T )⊕N . For M = K (T )

wehave that (M, N ) ∈ Red(T ), R(TM ) = R(T )∩M = R(T )∩K (T ) = K (T ) =
M , and so TM is surjective. Since H0(TN ) = H0(T ) ∩ N = N , we conclude that
TN is quasinilpotent.

(ii) �⇒ (i): Suppose that there exists (M, N ) ∈ Red(T ) such that TM is surjective
and TN is quasinilpotent. Then (M, N ) is a GKD for T and from [1, Theorem
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1.41] we obtain that K (T ) = K (TM ). Since TM is surjective, it follows that
K (TM ) = M , and so K (T ) = M and K (T ) is closed. Thus (K (T ), N ) ∈
Red(T ) and since TN is quasinilpotent, we have that N = H0(TN ) ⊂ H0(T ).
The rest of the proof is similar to the proofs of Theorems 3.6 and 3.4. ��

Remark 3.8 If T is generalized Drazin invertible, then from Theorem 2.1 and Theo-
rem 3.6 it follows that T is generalized Drazin bounded below and in that case the
closed subspace M of X which satisfies the condition (i) in Theorem 3.6, i.e. such that
(M, H0(T )) ∈ Red(T ) and T (M) is closed, is uniquely determined-we show that it
must be equal to K (T ). In other words, the projection P which satisfies the condition
(v) in Theorem 3.6 is uniquely determined-it is equal to the spectral idempotent of T
corresponding to the set {0}.

Indeed, from Theorem 3.6 it follows that T = TM ⊕ TH0(T ), TM is bounded below
and TH0(T ) is quasinilpotent. Since T is generalizedDrazin invertible, we have that 0 /∈
acc σ(T ), and hence, 0 /∈ acc σ(TM ). TM is Kato since it is bounded below, and so by
Proposition 3.2(i) we obtain that TM is invertible. Since T admits a GKD (M, H0(T )),
from [1, Theorem 3.15] it follows that M = K (T ). The similar observation can be
stated in the context of Theorem 3.7.

In the following theorem we give several necessary and sufficient conditions for
T ∈ L(X) to be generalized Drazin invertible.

Theorem 3.9 Let T ∈ L(X). The following conditions are equivalent:

(i) T is generalized Drazin invertible;
(ii) T admits a GKD and 0 /∈ int σ(T );
(iii) T admits a GKD and 0 /∈ int σB(T );
(iv) T admits a GKD and 0 /∈ acc σB(T );
(v) There exists (M, N ) ∈ Red(T ) such that TM is Browder and TN is quasinilpo-

tent;
(vi) There exists a bounded projection P on X which commutes with T such that

T + P is Browder and T P is quasinilpotent.

Proof Similar to the proof of Theorem 3.6. ��
From the equivalences (iii)⇐⇒(iv) in Theorems 3.6, 3.7 and 3.9 it follows that the

assertion of Corollary 3.5 holds also for 7 ≤ i ≤ 12.

Remark 3.10 Let T ∈ L(X) be a Riesz operator with infinite spectrum. The spectrum
of T is a sequence converging to 0, σ(T ) = σap(T ) = σsu(T ) and σRi (T ) = {0},
1 ≤ i ≤ 9. It follows that 0 /∈ int σRi (T ) = ∅, 1 ≤ i ≤ 12, and 0 /∈ acc σRi (T ) = ∅,
1 ≤ i ≤ 9. On the other hand, it was shown in [13] that T does not admit a GKD.
It means that the condition that the operator admits a GKD in the statements (iv),
(vii) and (viii) of Theorems 3.6 and 3.7, as well as in the statements (ii), (iii) and (iv)
of Theorem 3.9 and also, in the statements (ii) and (iii) of Theorem 3.4, can not be
omitted.

The following question is natural.
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Question 3.11 Does an operator which does not admit a GKD and such that 0 is not
an accumulation point of its approximate point (resp. surjective) spectrum exist? If
the answer is affirmative, then it means that the condition that T admits a GKD in the
statements (iii) of Theorems 3.6 and 3.7 can not be omitted.

Theorem 3.8 in [13] is equivalent to the following assertion: if 0 is a boundary point
of σ(T ), then T admits a GKD if and only if T is generalized Drazin invertible, that
is T = TM ⊕ TN where 0 /∈ σ(TM ) and TN is quasinilpotent. The following corollary
shows that the previous assertion can be extended to the cases of essential spectra,
as well the approximate point and surjective spectrum, in other words, this assertion
remains true if we replace the ordinary spectrum by σRi , i = 1, . . . , 11.

Corollary 3.12 Let T ∈ L(X) and let 0 ∈ ∂σRi (T ), 1 ≤ i ≤ 12. Then T admits a
generalized Kato decomposition if and only if T belongs to the class gDRi , that is
T = TM ⊕ TN , where 0 /∈ σRi (TM ) and TN is quainilpotent.

Proof Follows from the equivalence (i)⇐⇒(iii) in Theorem 3.4, the equivalences
(ii)⇐⇒(iv) in Theorems 3.6 and 3.7, the equivalence (i)⇐⇒(ii) in Theorem 3.9. ��
Remark 3.13 From the equivalences (i)⇐⇒(ii) in Theorem 3.4, (ii)⇐⇒(iii) in The-
orems 3.6 and 3.7, (i)⇐⇒(iii) in Theorem 2.1, it follows equalities:

gD�(X) = gD�+(X) ∩ gD�−(X),

gDW(X) = gDW+(X) ∩ gDW−(X),

L(X)K D = gDM(X) ∩ gDQ(X).

The inclusions L(X)K D ⊂ gDM(X) and L(X)K D ⊂ gDQ(X) may be strict.

Example 3.14 Let N0 = N ∪ {0} and let CN0 be the linear space of all complex
sequences x = (xk)∞k=0. Let �∞, c and c0 denote the set of bounded, convergent and
null sequences. We write �p = {x ∈ C

N0 : ∑∞
k=0 |xk |p < ∞} for 1 ≤ p < ∞. For

n = 0, 1, 2, . . . , let e(n) denote the sequences such that e(n)
n = 1 and e(n)

k = 0 for
k �= n. The forward and the backward unilateral shifts U and V are linear operators
on CN0 defined by

Ue(n) = e(n+1) and Ve(n+1) = e(n), n = 0, 1, 2, . . . .

For each X ∈ {c0, c, �∞, �p}, p ≥ 1,U , V ∈ L(X), VU = I and σ(U ) = σ(V ) = D,
where D = {λ ∈ C : |λ| ≤ 1}. Thus, U is bounded below (and thus U is generalized
Drazin bounded below) and since 0 ∈ acc σ(U ),U is not generalizedDrazin invertible.
Also, V is surjective (and hence V is generalized Drazin surjective) and V is not
generalized Drazin invertible.

The following remark enables us to give another example.

Remark 3.15 Let T ∈ L(X) and (M, N ) ∈ Red(T ) such that TM is bounded below
(resp. surjective) and TN is finite rank projection. Set R(TN ) = N1 and N (TN ) = N2.
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Then N1 ⊕ N2 = N , dimN1 < ∞, TN1 is identity and TN2 is zero operator. Also,
it is easy to see that X = (M ⊕ N1) ⊕ N2, M ⊕ N1 is closed and that TM⊕N1 is
bounded below (resp. surjective), hence T is generalized Drazin bounded below (resp.
generalized Drazin surjective).

Example 3.16 Let X , U and V be as in Example 3.14. Let us introduce an operator
P : X → X as

P(x1, x2, x3, . . . ) = (x1, 0, 0, . . . ), (x1, x2, x3, . . . ) ∈ X.

It is clear that P is bounded linear projection, dimR(P) = 1 and σ(P) = {0, 1}. We
consider the operator T = U ⊕ P . From σ(T ) = σ(U ) ∪ σ(P) = D we see that T
is not generalized Drazin invertible since 0 is an accumulation point of its spectrum.
Since U is bounded below, applying Remark 3.15, we obtain that T is generalized
Drazin bounded below. Since σap(T ) = σap(T ) ∪ σap(P) = ∂D ∪ {0}, T is not
bounded below.

A similar consideration shows that V ⊕ P is generalized Drazin surjective, but not
generalized Drazin invertible and not surjective.

We also show that the inclusions gDM(X) ⊂ gDW+(X) and gDQ(X) ⊂ gDW−(X)

can be proper.

Example 3.17 Let U and V be as in Example 3.14 and let T = U ⊕ V . Then,
according to Lemma 2.2(i), T is Fredholm and ind(T ) = ind(U )+ ind(V ) = 0. Thus
T is Weyl and hence, T is generalized Drazin Weyl. Since σap(U ) = σsu(V ) = ∂D

and σsu(U ) = σap(V ) = D, it follows that σap(T ) = σap(U ) ∪ σap(V ) = D and
σsu(T ) = σsu(U ) ∪ σsu(V ) = D. Therefore, 0 ∈ acc σap(T ) and 0 ∈ acc σsu(T ) and
from Theorems 3.6 and 3.7 it follows that T is neither generalized Drazin bounded
below nor generalized Drazin surjective.

Remark 3.18 We remark that

�+(X)\W+(X) ⊂ gD�+(X)\gDW+(X),

�−(X)\W−(X) ⊂ gD�−(X)\gDW−(X),

�(X)\W(X) ⊂ gD�(X)\gDW(X).

Indeed, the set �+(X)\W+(X) = {T ∈ �(X) : ind(T ) > 0} is open since the
index is locally constant. Hence the set σW+(T )\σ�+(T ) = ρ�+(T )\ρW+(T ) is
open for every T ∈ L(X). Let T ∈ �+(X)\W+(X). Then T ∈ gD�+(X) and
0 ∈ σW+(T )\σ�+(T ). There exists ε > 0 such that D(0, ε) ⊂ σW+(T )\σ�+(T ).
Hence, 0 ∈ acc σW+(T ) and T /∈ gDW+(X) according to Theorem 3.4. Similarly for
the remaining inclusions.

The next example shows that the inclusions gDW+(X) ⊂ gD�+(X), gDW−(X) ⊂
gD�−(X) and gDW(X) ⊂ gD�(X) can be proper.

Example 3.19 Let U and V be as in Example 3.14. The operators U and V are
Fredholm, ind(U ) = −1 and ind(V ) = 1. Therefore, U ∈ �−(X)\W−(X)
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and V ∈ �+(X)\W+(X), and also U, V ∈ �(X)\W(X). Hence, according to
Remark 3.18, U ∈ gD�−(X)\gDW−(X), V ∈ gD�+(X)\gDW+(X) and U, V ∈
gD�(X)\gDW(X).

Proposition 3.20 Let T ∈ L(X). If T ∈ gDRi , then T n ∈ gDRi for every n ∈ N,
1 ≤ i ≤ 12.

Proof Let T ∈ gDRi and n ∈ N. Then there exists (M, N ) ∈ Red(T ) such that
TM ∈ Ri and TN is quasinilpotent. It implies T n = T n

M ⊕ T n
N , T

n
M ∈ Ri , 1 ≤ i ≤ 12,

and T n
N is quasinilpotent. Consequently, T n ∈ gDRi . ��

In order to prove the opposite implication we need the following consideration.
If T ∈ L(X) and if f : U → C is analytic in a neighbourhood U ⊃ σ(T ),
then acc σ( f (T )) ⊂ f (acc σ(T )); see proof of [9, Theorem 2]. In addition, if f
is non-constant on every component of U , then the opposite inclusion is also true,
i.e. acc σ( f (T )) = f (acc σ(T )) [11, Lemma 2.3.2]. The important moment in their
proofs is the fact that σ(T ) is a compact set and that it satisfies the spectral mapping
theorem. We recall that the spectra σRi (T ), i ∈ {1, 2, 3, 7, 8, 9, 10, 11, 12}, are com-
pact and satisfy the spectral mapping theorem, so using a similar method as in the
references mentioned above we can conclude that the analogous assertion holds for
these types of spectra.

Lemma 3.21 If p is a nontrivial complex polynomial and if i ∈ {1, 2, 3, 7, 8, 9, 10,
11, 12}, then

acc σRi (p(T )) = p(acc σRi (T )). (3.2)

Applying formula (3.2) for p(t) = tn, n ∈ N, gives

0 /∈ acc σRi (T ) ⇐⇒ 0 /∈ acc σRi (T
n), i ∈ {1, 2, 3, 7, 8, 9, 10, 11, 12}, n ∈ N.

(3.3)

Proposition 3.22 Let T ∈ L(X) admit a GKD. If T n ∈ gDRi for some n ∈ N, then
T ∈ gDRi , where i ∈ {1, 2, 3, 7, 8, 9, 10, 11, 12}.
Proof Suppose that T admits a GKD and that T n ∈ gDRi for some n ∈ N. Then,
0 /∈ acc σRi (T

n), and also 0 /∈ acc σRi (T ) according to (3.3). We apply Theorems 3.4,
3.6, 3.7 or 3.9 and obtain T ∈ gDRi . ��

4 The Classes DRi

Analysis similar to that in the proof of Theorem 3.4 gives the following result.

Theorem 4.1 Let T ∈ L(X) and 1 ≤ i ≤ 12. The following conditions are equiva-
lent:

(i) There exists (M, N ) ∈ Red(T ) such that TM ∈ Ri and TN is nilpotent, that is
T ∈ DRi ;

(ii) T is of Kato type and 0 /∈ acc σRi (T );
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(iii) T is of Kato type and 0 /∈ int σRi (T );
(iv) There exists a projection P ∈ L(X) that commutes with T such that T + P ∈ Ri

and T P is nilpotent.

Theorem2.9 in [2] is equivalent to the following assertion: if 0 is a boundary point of
σ(T ), then T is of Kato type if and only if T is Drazin invertible, that is T = TM ⊕TN
where 0 /∈ σ(TM ) and TN is nilpotent. The following corollary shows that in the
previous assertion the ordinary spectrum can be replaced by σRi , i = 1, . . . , 11.

Corollary 4.2 Let T ∈ L(X) and let 0 ∈ ∂σRi (T ), 1 ≤ i ≤ 12. Then T is of Kato
type if and only if T belongs to the classDRi , that is T = TM⊕TN , where 0 /∈ σRi (TM )

and TN is nilpotent.

Proof Follows from the equivalence (i)⇐⇒(iii) in Theorem 4.1. ��
Remark 4.3 Using [3, Theorem 2.7] and [5, Lemma 4.1] we see that if i = 3 (i = 6)
then the conditions (i)–(iv) of Theorem 4.1 are equivalent to the fact that T is B-
Fredholm (T is B-Weyl), while if i = 12 these conditions are equivalent to the fact
that T is Drazin invertible.

Similar to the definitions of the B-Fredholm and B-Weyl operators, the classes BRi

are introduced and studied [4]. In what follows we want to connect the classes DRi

and BRi for other values of i , but some preparation is needed first. For the case of a
Hilbert space see [4, Theorem 3.12].

We recall that for every linear operator T acting on a Banach space X and every
n ∈ N0 the operator Tn : R(T n) → R(T n) is defined as Tnx = T x for x ∈ R(T n).
Clearly, Tn is linear operator and T0 = T . Further, let c′

n(T ) = dimN (T n+1)/N (T n)

and cn(T ) = dimR(T n)/R(T n+1). According to [16, Lemmas 1, 2], c′
n(T ) =

dim(N (T )∩R(T n)) and cn(T ) = codim (R(T )+N (T n)), so the sequences (c′
n(T ))n

and (cn(T ))n are non-increasing. In particular, c′
0(T ) = α(T ) and c0(T ) = β(T ). The

sequence ((kn(T ))n is given by

kn(T ) = dim(R(T n) ∩ N (T ))/(R(T n+1) ∩ N (T ))

and equivalently

kn(T ) = dim(R(T ) + N (T n+1))/(R(T ) + N (T n)).

From this it is easily seen that

c′
n(T ) = kn(T ) + c′

n+1(T ) and cn(T ) = kn(T ) + cn+1(T ), (4.1)

and that an operator T ∈ L(X) is Kato if and only if R(T ) is closed and ki (T ) = 0
for all i ≥ 0.

Remark 4.4 (i) Suppose that X is a Banach space and let T ∈ L(X). If (M, N ) ∈
Red(T ) and if TN is nilpotent, then the following statements are equivalent.
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(a) asc(Tn) < ∞ for every n ∈ N0;
(b) asc(Tn) < ∞ for some n ∈ N0;
(c) asc(TM ) < ∞. The implication (a) �⇒ (b) is obvious.

(b) �⇒ (c): Let asc(Tn) < ∞ for some n ∈ N0. It is evident that c′
p(Tn) = 0 for

some p. From [4, Lemma 3.1] it follows that c′
n+p(T ) = c′

p(Tn) = 0 and therefore
asc(T ) < ∞. According to the proof of Lemma 2.2, we get asc(TM ) < ∞.
(c) �⇒ (a): Suppose that asc(TM ) < ∞ and let n ∈ N0. Since TN is nilpotent then
asc(TN ) is finite, and thus asc(T ) < ∞ by the proof of Lemma 2.2. There exists p ≥ n
such that c′

p(T ) = 0. From [4, Lemma 3.1] it follows c′
p−n(Tn) = c′

p(T ) = 0, and
thus asc(Tn) < ∞.

Similarly, if (M, N ) ∈ Red(T ) and if TN is nilpotent, then the following statements
are equivalent.

(a) dsc(Tn) < ∞ for every n ∈ N0;
(b) dsc(Tn) < ∞ for some n ∈ N0;
(c) dsc(TM ) < ∞.

(ii) If Tn is upper (resp. lower) semi-Fredholm for some n ≥ 0 then R(Tm) is closed,
Tm is upper (resp. lower) semi-Fredholm and ind(Tm) = ind(Tn) for everym ≥ n
[6].

The following proposition connects the classes BRi and DRi , for i ∈ {1, 2, 4, 5, 7,
8, 10, 11}, in the context of a Banach space.

Proposition 4.5 Let X be a Banach space. If T ∈ L(X) and i ∈ {1, 2, 4, 5, 7, 8, 10,
11} then the following statements are equivalent.

(i) T is of Kato type and T ∈ BRi ;
(ii) T ∈ DRi .

Proof (i) �⇒ (ii): Suppose that T is of Kato type and that T ∈ B�+(X). There exist
two closed T -invariant subspaces M and N such that X = M⊕N , TM is Kato and
TN is nilpotent of degree d. Also, there exists n ≥ 0 such that R(T n) is closed and
Tn is upper semi-Fredholm. From c′

n(T ) = dim(N (T ) ∩ R(T n)) = α(Tn) < ∞
and from the fact that (c′

k(T ))k is a non-increasing sequence, there exists p ≥
max{d, n} such that c′

p(T ) = c′
p+1(T ) = · · · < ∞. It follows that T p

N = 0,
so c′

p(TN ) = 0 and thus c′
p(TM ) = c′

p(TM ) + c′
p(TN ) = c′

p(T ) < ∞. Since
k j (TM ) = 0 for each j ≥ 0 then (4.1) gives α(TM ) = c′

0(TM ) = c′
p(TM ) < ∞.

Since TM has closed range, it follows that TM is upper semi-Fredholm.
In addition, if T ∈ BM(X), then c′

n(T ) = α(Tn) = 0, so α(TM ) = c′
p(TM ) =

c′
p(T ) = 0, and hence TM is bounded below. Further, if T ∈ BB+(X), then TM is

upper semi-Browder by Remark 4.4.
Let T ∈ BW+(X). It follows that R(T p) = R((TM )p) ⊂ M , R(T p) is closed
and ind(Tp) = ind(Tn) ≤ 0. Since TM is upper semi-Fredholm, then ind(TM ) =
ind((TM )p), where (TM )p : R((TM )p) → R((TM )p). It is evident that Tp =
(TM )p, hence ind(TM ) = ind((TM )p) = ind(Tp) = ind(Tn) ≤ 0, i.e. TM ∈
W+(X), so T ∈ DW+(X).
The remaining part can be proved similarly.
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(ii) �⇒ (i): Let T ∈ DW+(X). There exists (M, N ) ∈ Red(T ) such that TM is upper
semi-Weyl and TN is nilpotent. Then R(T p) is closed and R(T p) = R((TM )p) ⊂
M for sufficiently large p. From Tp = (TM )p we conclude that Tp is upper semi-
Fredholm and ind(Tp) = ind((TM )p) = ind(TM ) ≤ 0. It means that Tp is upper
semi-Weyl, so T ∈ BW+(X). Using the similar technique we can prove the
remaining part. ��

If T ∈ L(X) is again a Riesz operator with infinite spectrum, then 0 ∈ σgK (T ) ⊂
σKt (T ), so T is not of Kato type. It means that the condition that T is of Kato type
can not be omitted from the statement (iii) of Theorem 4.1 for 1 ≤ i ≤ 12, as well as
from the statement (ii) of Theorem 4.1 if i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9}. The following
example ensures that the condition that T is of Kato type in the statement (ii) of
Theorem 4.1 can not be omitted if i ∈ {10, 11, 12}.
Example 4.6 Let Q : �2(N) → �2(N) be the operator defined by

Q(ξ1, ξ2, ξ3, . . .) =
(
0, ξ1,

1

2
ξ2,

1

3
ξ3, . . .

)
, (ξ1, ξ2, ξ3, . . .) ∈ �2(N).

From limn→∞ ||Qn|| 1n = limn→∞( 1
n! )

1
n = 0 we see that Q is quasinilpotent. It

follows that 0 is not an accumulation point of the spectrum (resp. approximate point
spectrum, surjective spectrum) of Q. Obviously, Q is the limit of finite rank operators
Fn, n ∈ N, given by

Fn(ξ1, ξ2, ξ3, . . .) =
(
0, ξ1,

1

2
ξ2, . . . ,

1

n
ξn, 0, 0, . . .

)
, n ∈ N,

and therefore Q is compact. Since Qn is compact and R(Qn) is infinite dimensional,
we conclude that R(Qn) is not closed for every n ∈ N.

Suppose that Q is of Kato type, i.e. Q = QM ⊕ QN with QM Kato and QN

nilpotent. For sufficiently large n we have that R(Qn) = R((QM )n) is closed what is
not possible. Consequently, Q is not of Kato type.

5 Applications

For T ∈ L(X) we define the spectra with respect to the sets gDRi , 1 ≤ i ≤ 12, in a
classical way,

σgDRi
(T ) = {λ ∈ C : T − λ /∈ gDRi }, 1 ≤ i ≤ 12.

From Theorems 3.4, 3.6 and 3.7 it follows that

σgDRi
(T ) = σgK (T ) ∪ acc σRi (T )

= σgK (T ) ∪ int σRi (T ), 1 ≤ i ≤ 12. (5.1)
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The spectra σDRi (T ) are defined analogously. According to Theorem 4.1 and
Remark 4.3, we have

σB�(T ) = σKt (T ) ∪ int σ�(T ) and σBW (T ) = σKt (T ) ∪ int σW (T ). (5.2)

Clearly,

σgD�+ (T ) ⊂ σgDW+ (T ) ⊂ σgDM(T ) ⊂ σap(T )

⊂ ⊂
σgK (T ) ⊂ σgD�(T ) ⊂ σgDW (T ) ⊂ σgD(T )

⊂ ⊂
σgD�− (T ) ⊂ σgDW− (T ) ⊂ σgDQ(T ) ⊂ σsu(T )

According to Remark 3.13 we have

σgD�(T ) = σgD�+(T ) ∪ σgD�−(T ),

σgDW (T ) = σgDW+(T ) ∪ σgDW−(T ),

σgD(T ) = σgDM(T ) ∪ σgDQ(T ).

From (5.1) it follows that if T ∈ L(X) has the property that

σRi (T ) = ∂σRi (T ),

then

σgK (T ) = σgDRi
(T ), 1 ≤ i ≤ 12.

Consequently, if σ(T ) is at most countable or contained in a line, then σgK (T ) =
σgDRi

(T ) = σgD(T ), 1 ≤ i ≤ 11. As examples of operators with the spectrum
contained in a line we mention self-adjoint and unitary operators on a Hilbert space.
The spectrum of polynomially meromorphic operator [15] is at most countable.

Proposition 5.1 Let T ∈ L(X) and 1 ≤ i ≤ 12. The following statements hold:

(i) σgDRi
(T ) ⊂ σDRi (T ) ⊂ σRi (T ) ⊂ σ(T );

(ii) σgDRi
(T ) is a compact subset of C;

(iii) σRi (T )\σgDRi
(T ) consists of at most countably many isolated points.

Proof (i): It is obvious.

(ii): It suffices to prove that σgDRi
(T ) is closed since it is bounded by the part (i).

If λ0 /∈ σgDRi
(T ), then T − λ0 ∈ gDRi and by Proposition 3.3 there exists

ε > 0 such that T − λ0 − λ ∈ Ri ⊂ gDRi for 0 < |λ| < ε. It means that
D(λ0, ε) ⊂ C\σgDRi

(T ) and we can conclude that σgDRi
(T ) is closed.

(iii): If λ ∈ σRi (T )\σgDRi
(T ), then λ ∈ σRi (T ) and T − λ ∈ gDRi . Applying

Proposition 3.3 we obtain that λ ∈ iso σRi (T ), and hence σRi (T )\σgDRi
(T )

consists of at most countably many isolated points. ��
Corollary 5.2 Let T ∈ L(X). Then the following inclusions hold:
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(i) acc σap(T )\acc σB+(T ) ⊂ σgK (T ),
(ii) acc σsu(T )\acc σB−(T ) ⊂ σgK (T ),
(iii) acc σ(T )\acc σB(T ) ⊂ σgK (T ),
(iv) int σap(T )\int σB+(T ) ⊂ σgK (T ),
(v) int σsu(T )\int σB−(T ) ⊂ σgK (T ),
(vi) int σ(T )\int σB(T ) ⊂ σgK (T ).

Proof Follows from the equivalences (iii) ⇐⇒ (vii) and (iv) ⇐⇒ (viii) in Theo-
rems 3.6 and 3.7. ��
Remark 5.3 Let T ∈ L(X) be a Riesz operator with infinite spectrum. As we men-
tioned earlier, T does not admit a GKD [13]. It is interesting to note that the same
follows from Corollary 5.2. Namely, σB(T ) = {0} and so 0 /∈ acc σB(T ), while
0 ∈ acc σ(T ). Therefore, 0 ∈ acc σ(T )\acc σB(T ) and hence 0 ∈ σgK (T ) by Corol-
lary 5.2.

We give an alternative proof of the inclusion

∂σ(T ) ∩ acc σ(T ) ⊂ σgK (T )

from Jiang and Zhong’s paper [13] (see Corollary 3.6 and Theorem 3.8) and establish
the inclusions of the same type for other spectra.

Theorem 5.4 Let T ∈ L(X). Then the following inclusions hold:

∂σRi (T ) ∩ acc σRi (T ) ⊂ σgK (T ), 1 ≤ i ≤ 12. (5.3)

Moreover,

∂σB+(T ) ∩ acc σap(T ) ⊂ σgK (T );
∂σB−(T ) ∩ acc σsu(T ) ⊂ σgK (T );

∂σB(T ) ∩ acc σ(T ) ⊂ σgK (T ).

Proof From Theorems 3.9 and 2.1, the equivalence (iii)⇐⇒(iv) in Theorems 3.6 and
3.7 and the equivalence (ii)⇐⇒(iii) in Theorem 3.4 it foollows that if T − λ ∈ L(X)

admits a GKD, then

λ ∈ int σRi (T ) ⇐⇒ λ ∈ acc σRi (T ), 1 ≤ i ≤ 12.

Therefore, we have the inclusions

∂σRi (T ) ∩ acc σRi (T ) = acc σRi (T )\int σRi (T ) ⊂ σgK (T ), 1 ≤ i ≤ 12.

Suppose that λ ∈ ∂σB+(T ) and T − λ admits a GKD. Then λ /∈ int σB+(T )

and from the equivalence (viii)⇐⇒(iii) in Theorem 3.6 we get that λ /∈ acc σap(T ).
Therefore, if λ ∈ ∂σB+(T ) ∩ acc σap(T ), then T − λ does not admit a GKD, i.e.
λ ∈ σgK (T ). The remaining inclusions can be proved analogously. ��
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From (5.3) it follows that

∂σRi (T ) ⊂ σgK (T ) ∪ iso σRi (T ), 1 ≤ i ≤ 12,

which implies that

∂σRi (T )\σgK (T ) ⊂ iso σRi (T ),

and hence ∂σRi (T )\σgK (T ) consist of at most countably many points.
The connected hull of a compact subset K of the complex planeC, denoted by ηK ,

is the complement of the unbounded component of C\K ([10, Definition 7.10.1]).
Given a compact subset K of the plane, a hole of K is a bounded component of C\K ,
and so a hole of K is a component of ηK\K . Generally ([10, Theorem 7.10.3]), for
compact subsets H, K ⊂ C,

∂H ⊂ K ⊂ H �⇒ ∂H ⊂ ∂K ⊂ K ⊂ H ⊂ ηK = ηH. (5.4)

If K ⊆ C is at most countable, thenC\K is connected and hence, ηK = K . Therefore,
for compact subsets H, K ⊆ C,

ηK = ηH �⇒ (H is at most countable ⇐⇒ K is at most countable), (5.5)

and in that case H = K .

Theorem 5.5 Let T ∈ L(X). Then

∂σgDM(T ) ⊂ ∂σgDW+(T ) ⊂ ∂σgD�+(T )

⊂ ⊂
∂σgD(T ) ⊂ ∂σgDW (T ) ⊂ ∂σgD�(T ) ⊂ ∂σgK (T )

⊂ ⊂
∂σgDQ(T ) ⊂ ∂σgDW−(T ) ⊂ ∂σgD�−(T )

∂σgD�(T ) ⊂ ∂σgD�+(T ), ∂σgD�(T ) ⊂ ∂σgD�−(T ),

∂σgDW (T ) ⊂ ∂σgDW+(T ), ∂σgDW (T ) ⊂ ∂σgDW−(T ),

and

ησgK (T ) = ησgD�+(T ) = ησgDW+(T ) = ησgDM(T )

= ησgD�−(T ) = ησgDW−(T ) = ησgDQ(T )

= ησgD�(T ) = ησgDW (T ) = ησgD(T ). (5.6)
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Proof According to (5.4) it is sufficient to prove the inclusions
(i) ∂σgD(T ) ⊂ σgK (T ); (ii) ∂σgDM(T ) ⊂ σgK (T ); (iii)∂σgDW+(T ) ⊂

σgK (T );
(iv) ∂σgD�+(T ) ⊂ σgK (T ); (v) ∂σgDQ(T ) ⊂ σgK (T ); (vi) ∂σgDW−(T ) ⊂

σgK (T );
(vii) ∂σgD�−(T ) ⊂ σgK (T ); (viii) ∂σgDW (T ) ⊂ σgK (T ); (ix) ∂σgD�(T ) ⊂

σgK (T ).
Suppose that λ0 ∈ ∂σgD(T ). Since σgD(T ) is closed, it follows that

λ0 ∈ σgD(T ) = σgK (T ) ∪ int σ(T ). (5.7)

We prove that
λ0 /∈ int σ(T ). (5.8)

Suppose on the contrary that λ0 ∈ int σ(T ). Then there exists an ε > 0 such that
D(λ0, ε) ⊂ σ(T ). This means that D(λ0, ε) ⊂ int σ(T ) and hence, D(λ0, ε) ⊂
σgD(T ), which contradicts the fact that λ0 ∈ ∂σgD(T ). Now from (5.7) and (5.8), it
follows that λ0 ∈ σgK (T ).

The inclusions (ii)-(ix) can be proved similarly to the inclusion (i). ��
For A ⊂ C it holds

A is at most countable ⇐⇒ acc A is at most countable. (5.9)

Proposition 5.6 Let T ∈ L(X). Then σ(T ) is at most countable if and only if σgK (T )

is at most countable if and only if σgDRi
(T ) is at most countable for arbitrary i =

1, . . . , 12, and in that case σgK (T ) = σgD(T ) = σgDRi
(T ), i = 1, . . . , 11.

In particular, σ(T ) is a finite set if and only if σgK (T ) = ∅ if and only if σgDRi
(T ) =

∅ for arbitrary i = 1, . . . , 12.

Proof From (5.9) it follows that σ(T ) is at most countable if and only if σgD(T ) =
acc σ(T ) is at most countable. Now the first assertion follows from (5.5) and (5.6).
The second assertion follows from the first one and the fact that σ(T ) is a finite set if
and only if σgD(T ) = acc σ(T ) = ∅. ��

The Drazin spectrum of T ∈ L(X) is defined as

σD(T ) = {λ ∈ C : T − λ is not Drazin invertible}.

Theorem 5.7 Let T ∈ L(X). Then

∂σD(T ) ⊂ ∂σBW (T ) ⊂ ∂σB�(T ) ⊂ ∂σKt (T )

and

ησKt (T ) = ησB�(T ) = ησBW (T ) = ησD(T ).
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Proof From [2, Theorem 2.9] we have σD(T ) = σKt (T ) ∪ int σ(T ). Now use this
equality and (5.2), and proceed similarly as in the proof of Theorem 5.5. ��

The generalized Kato resolvent set of T ∈ L(X) is defined by ρgK (T ) =
C\σgK (T ). We give an alternative proof of Theorem 3 in [14] based on Theorem 5.5.

Corollary 5.8 ([14], Theorem 3) Let T ∈ L(X) and let ρgK (T ) has only one com-
ponent. Then

σgK (T ) = σgD(T ).

Proof Since ρgK (T ) has only one component, it follows that σgK (T ) has no holes, and
so σgK (T ) = ησgK (T ). From (5.6) it follows that σgD(T ) ⊃ σgK (T ) = ησgK (T ) =
ησgD(T ) ⊃ σgD(T ) and hence σgD(T ) = σgK (T ). ��
Theorem 5.9 Let T ∈ L(X) and 1 ≤ i ≤ 12. If

∂σRi (T ) ⊂ acc σRi (T ), (5.10)

then
∂σRi (T ) ⊂ σgK (T ) ⊂ σKt (T ) ⊂ σeK (T ) ⊂ σRi (T ) (5.11)

and
ησRi (T ) = ησgK (T ) = ησKt (T ) = ησeK (T ). (5.12)

Proof From ∂σRi (T ) ⊂ acc σRi (T ) it follows that ∂σRi (T )∩ acc σRi (T ) = ∂σRi (T ),
and so from (5.3) it follows that ∂σRi (T ) ⊂ σgK (T ). (5.12) follows from (5.11) and
(5.4). ��
Theorem 5.10 Let T ∈ L(X) and 1 ≤ i ≤ 12. If

σRi (T ) = ∂σRi (T ) = acc σRi (T ), (5.13)

then

σgK (T ) = σKt (T ) = σeK (T ) = σgDRi
(T ) = σDRi (T ) = σRi (T ). (5.14)

Proof Suppose that σRi (T ) = ∂σRi (T ) and that every λ ∈ σRi (T ) is not isolated in
σRi (T ). From Theorem 5.9 it follows that

σRi (T ) = ∂σRi (T ) ⊂ σgK (T ) ⊂ σKt (T ) ⊂ σeK (T ) ⊂ σRi (T ),

and so

σRi (T ) = σgK (T ) = σKt (T ) = σeK (T ) = σgDRi
(T ).

The other cases can be proved analogously. ��
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If K ⊂ C is compact, then for λ ∈ ∂K there is equivalence:

λ ∈ acc K ⇐⇒ λ ∈ acc ∂K . (5.15)

Corollary 5.11 Let T ∈ L(X) be an operator for which σRi (T ) = ∂σ(T ), 1 ≤ i ≤
12, and every λ ∈ ∂σ(T ) is not isolated in σ(T ). Then

σgK (T ) = σKt (T ) = σeK (T ) = σgDRi
(T ) = σDRi (T ) = σRi (T ). (5.16)

Proof From σRi(T ) = ∂σ(T ) it follows that σRi (T ) = ∂σRi (T ), while from (5.15)
it follows that every λ ∈ ∂σ(T ) is not isolated in ∂σ(T ), i.e. in σRi (T ). Therefore,
σRi(T ) = ∂σRi(T ) = acc σRi(T ) and from Theorem 5.10 we get (5.16). ��
Example 5.12 Let U and V be as in Example 3.14. Since σ(U ) = σ(V ) = D,

σap(U ) = σsu(V ) = ∂D, σ�(U ) = σ�+(U ) = σ�−(U ) = ∂D and σ�(V ) =
σ�+(V ) = σ�−(V ) = ∂D, then the conditions of Theorem 5.10, as well Corollary
5.11, are satisfied for i = 1, 2, 3, 10, 11, and hence we get

∂D = σgK (U ) = σKt (U ) = σK (U ) = σap(U )

= σgDM(U ) = σgDW+(U ) = σgD�+(U ) = σgD�−(U ) = σgD�(U )

= σDM(U ) = σDW+(U ) = σD�+(U ) = σD�−(U ) = σB�(U )

and

∂D = σgK (V ) = σKt (V ) = σK (V ) = σsu(V )

= σgDQ(V ) = σgDW−(V ) = σgD�−(V ) = σgD�+(V ) = σgD�(V )

= σDQ(V ) = σDW−(V ) = σD�−(V ) = σD�+(V ) = σB�(V ).

Example 5.13 Let T be the unilateral weighted right shift defined on �p(N), 1 ≤ p <

∞, with the weight sequence (ωn)n∈N. Then the spectral radius of T , r(T ), is equal
to limn→∞ supk∈N(ωk · · · ωk+n−1)

1/n .
If we suppose that limn→∞ infk∈N(ωk · · · ωk+n−1)

1/n = r(T ), then, according
to [23, Proposition 1.6.15], σap(T ) = {λ ∈ C : |λ| = r(T )}. Thus, σap(T ) =
∂σap(T ) = acc σap(T ) and from Theorem 5.10 it follows that

σgK (T ) = σKt (T ) = σK (T ) = σap(U )

= σgDM(U ) = σgDW+(U ) = σgD�+(U )

= σDM(T ) = σDW+(T ) = σD�+(T )

= {λ ∈ C : |λ| = r(T )}.

On the other side, if we suppose that c(T ) = limn→∞ inf(ω1 · · · ωn)
1/n = 0, then

σ(T ) = D(0, r(T )) (see [1, Corollary 3.118]). For r(T ) > 0, in [13, Example 3.14],
it is proved that σgK (T ) = σ(T ). It implies that σKt (T ) = σgDRi

(T ) = σDRi (T ) =
σ(T ), 1 ≤ i ≤ 12.
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