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Abstract Let R denote any of the following classes: upper (lower) semi-Fredholm
operators, Fredholm operators, upper (lower) semi-Weyl operators, Weyl operators,
upper (lower) semi-Browder operators, Browder operators. For a bounded linear oper-
ator T on a Banach space X we prove that T = Ty @ Ty with Tyy € R and Ty
quasinilpotent (nilpotent) if and only if 7 admits a generalized Kato decomposition
(T is of Kato type) and O is not an interior point of the corresponding spectrum
or(T) ={,A € C: T — A ¢ R}. Moreover, we prove that if T — A9 admits a general-
ized Kato decomposition, then or (T") does not cluster at Ag if and only if 1¢ is not an
interior point of or (7). As a consequence we get several results on cluster points of
essential spectra. In that way we extend some results regarding the approximate point
spectrum and the surjective spectrum given by Aiena and Rosas (J. Math. Anal. Appl.
279:180-188, 2003), as well as results given by Jiang and Zhong (J. Math. Anal. Appl.
356:322-327, 2009) to the cases of essential spectra.
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1 Introduction

Given a Banach space X and an operator T € L(X), T is said to be Drazin invertible,
if there exists S € L(X) and some m € N such that

T" =T"ST, STS=S, ST=TS.

It is a classical result that necessary and sufficient for 7 to be Drazin invertible is
T = T ® T», where T is invertible and 7> nilpotent; see [18,24]. Drazin invertible
operators and Fredholm operators were generalized to B-Fredholm operators by M.
Berkani [3]. According to [3, Theorem 2.7] T is B-Fredholmifand only if T = T1 ® T
with T Fredholm and 75 nilpotent. For more details about the B-Fredholm operators
we refer the reader to [3-06].

It is said that T € L(X) admits a Kato decomposition or 7 is of Kato type if
there exist two closed T -invariant subspaces M and N suchthat X = M @& N, Ty is
Kato and T} is nilpotent. T. Kato proved in [17] that semi-Fredholm operators admit
a Kato decomposition with N finite-dimensional. It is not difficult to see that every
B-Fredholm operator admits a Kato decomposition. In [22] Labrouse introduced and
studied quasi-Fredholm operators in the context of a Hilbert space. He showed that
quasi-Fredholm operators are precisely those admitting a Kato decomposition.

If we require that T is quasinilpotent instead of nilpotent in the definition of the
Kato decomposition, then it leads us to the generalized Kato decomposition. Operators
that admit a generalized Kato decomposition were firstly studied by M. Mbekhta in
[26] and he called them pseudo-Fredholm operators.

J. Koliha extended the concept of Drazin invertibility and introduced generalized
Drazin invertible operators [19]. According to his work, an operator T € L(X) is gen-
eralized Drazin invertible if and only if 0 is not an accumulation point of the spectrum
of T, and it is exactly when 7' = T1 @ T, with Tj invertible and 7> quasinilpotent.
The class of generalized Drazin invertible operators were extended [12] in a way that
it was considered the class of operators that can be represented as the direct sum of
a bounded below (surjective) operator and a quasinilpotent operator. Very recently,
pseudo B-Fredholm and pseudo B-Weyl operators were defined in a sense that 7 is
pseudo B-Fredholm (resp. pseudo B-Weyl) if T = T1 @ T», where T is Fredholm
(resp. Weyl) and T5 is quasinilpotent [7,29].

In accordance with these observations it is natural to study various types of the
direct sums. Namely, let R denote any of the following classes: upper (lower) semi-
Fredholm operators, Fredholm operators, upper (lower) semi-Weyl operators, Weyl
operators, upper (lower) semi-Browder operators, Browder operators, bounded below
operators, surjective operators, invertible operators. The main objective of this article
is to provide necessary and sufficient conditions for an operator T € L(X) to be the
direct sum of an operator 771 € R and a quasinilpotent (nilpotent) operator 7.

In Sect. 2 we set up terminology and recall necessary facts. Our main results are
established in Sects. 3 and 4. Given an operator 7 € L(X), X is a Banach space, we
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prove that T = Ty; & Ty with Ty; € R and Ty quasinilpotent (7 nilpotent) if and
only if 7 admits a generalized Kato decomposition (7 is of Kato type) and O is not an
interior point of or(7) = {A € C: T — A ¢ R} (see Theorems 3.4, 3.6, 3.7, 3.9, 4.1
below). Moreover, we prove that if 7 — 1o admits a generalized Kato decomposition,
then or(7T') does not cluster at A¢ if and only if X¢ is not an interior point of or(T).
In that way we extend to the cases of essential spectra the result given by Jiang and
Zhong [13, Theorem 3.5 and Theorem 3.9] where they show that if 7 — Ao admits a
GKD, A is not an accumulation point of its approximate point (surjective) spectrum
if and only if A¢ is not an interior point of the approximate point (surjective) spectrum
of T (see Corollary 3.5 below). Also, we extend to the cases of essential spectra, as
well the approximate point and surjective spectrum, the result of Aiena and Rosas [2,
Theorem 2.9] (the result of Jiang and Zhong [13, Theorem 3.8]) which is equivalent
to the following assertion: if O is a boundary point of o (T'), then T is of Kato type
(T admits a GKD) if and only if 7 is Drazin (generalized Drazin) invertible, that
is T = Ty & Ty where 0 ¢ o(Ty) and Ty nilpotent (7 quasinilpotent) (see
Corollary 4.2 (Corollary 3.12) below).

Section 5 contains some applications. We prove that every boundary point of or (7'),
where R is any of the classes mentioned above, which is also an accumulation point
of or(T') belongs to the generalized Kato spectrum. In particular, if R is the class of
invertible operators we obtain [13, Corollary 3.6]. If T € L(X), let ogpr(7) be the
setof all & € C such that 7 — X can not be represented as the direct sum of an operator
from the class R and a quasinilpotent operator. We show that the connected hull of the
spectrum ogpRr (T') coincide with the connected hull of the generalized Kato spectrum
for every class R. In particular, the connected hulls of the generalized Drazin spectrum
and the generalized Kato spectrum are equal and as a consequence of this fact we get
Theorem 3 in [14]. Moreover, the connected hulls of the B-Fredholm, B-Weyl, Drazin
and of the Kato type spectrum are equal. Also, from the condition or (7)) = dor(T) =
accor(T) we derive o4k (T) = ok (T) = 0.k (T) = or(T) = ogpr(T) for every
aforementioned class R.

2 Preliminaries

Let N (Np) denote the set of all positive (non-negative) integers, and let C denote the
set of all complex numbers. Let X be an infinite dimensional Banach space and let
L(X) be the Banach algebra of all bounded linear operators acting on X. The group
of all invertible operators is denoted by L(X)~!. Given T e L(X), we denote by
N(T), R(T) and o (T), the kernel, the range and the spectrum of T, respectively. In
addition, «(T) and B(T) will stand for nullity and defect of T. The space of bounded
linear functionals on X is denoted by X'. If K C C, then 9K is the boundary of K,
acc K 1is the set of accumulation points of K, iso K = K\acc K and int K is the set
of interior points of K. For Ao € C, the open disc, centered at Ao with radius € in C,
is denoted by D (Ao, €).

Recall that 7 is said to be nilpotent when T" = 0 for some n € N, while T is
quasinilpotent if | T"||'/" — 0, thatis T — A € L(X)~! for all complex A # 0. An
operator T € L(X) is bounded below if there exists some ¢ > 0 such that c||x|| <
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ITx| forevery x € X.Let M(X) denote the set of all bounded below operators, and
let Q(X) denote the set of all surjective operators. The approximate point spectrum
of T € L(X) is defined by

04p(T) ={* € C: T — A is not bounded below}
and the surjective spectrum is defined by
o5y (T) = {A € C: T — X is not surjective}.

An operator T € L(X) is Kato if R(T) is closed and N(T) C R(T"), n € Ny. If
R(T) is closed and «(T) < oo, then T € L(X) is said to be upper semi-Fredholm.
An operator T € L(X) is lower semi-Fredholm if B(T) < oco. The set of upper semi-
Fredholm operators (lower semi-Fredholm operators) is denoted by @ (X) (P_(X)).
If T is upper or lower semi-Fredholm operator then the index of 7' is defined as
ind(T) = a(T) — B(T). An operator T is Fredholm if both «(T) and B(T) are finite.
We will denote by @ (X) the set of Fredholm operators. The sets of upper semi-Weyl,
lower semi Weyl and Weyl operators are defined by Wy (X) = {T € ®4(X) : ind(T) <
O} W_(X) ={T € ®_(X) : ind(T) > 0} and W(X) = {T € ®(X) :ind(T) = 0},
respectively. B-Fredholm and B-Weyl operators were introduced and studied by M.
Berkani [3-5]. An operator T € L(X) is said to be B-Fredholm (B-Weyl) if there is
n € N such that R(T") is closed and the restriction 7, € L(R(T")) of T to R(T") is
Fredholm (Weyl). The B-Fredholm and the B-Weyl spectrum of T are defined by

opa(T) = {A € C: T — A is not B-Fredholm},
opw(T) = {r € C: T — A is not B-Weyl}, respectively.

Recall that T € L(X) is said to be Riesz operator, if T — A € ®(X) for every non-zero
1 eC.

The ascent of T is defined as asc(T) = inf{n € Ny : N(T") = N(T"+1)}, and
descent of T is defined as dsc(T) = inf{n € Ny : R(T") = R(T"*")}, where the
infimum over the empty set is taken to be infinity. An operator T € L(X) is upper
semi-Browder if T is upper semi-Fredholm and asc(T) < oo. If T € L(X) is lower
semi-Fredholm and dsc(7") < oo, then T is lower semi-Browder. Let B4 (X) (B- (X))
denote the set of all upper (lower) semi-Browder operators. The set of Browder oper-
ators is defined by B(X) = B+ (X) N B_(X).

If M is a subspace of X such that T(M) C M, T € L(X), it is said that M is
T -invariant. We define Tyy - M — M as Tyx = Tx, x € M.If M and N are two
closed T-invariant subspaces of X such that X = M & N, we say that T is completely
reduced by the pair (M, N) and it is denoted by (M, N) € Red(T). In this case we
write T = Ty @ Ty and say that T is the direct sum of Ty; and Ty.

An operator T € L(X) is said to admit a generalized Kato decomposition, abbre-
viated as GKD, if there exists a pair (M, N) € Red(T) such that T); is Kato and Ty
is quasinilpotent. A relevant case is obtained if we assume that Ty is nilpotent. In this
case T is said to be of Kato type. An operator is said to be essentially Kato if it admits
a GKD (M, N) such that N is finite-dimensional. If T is essentially Kato then T}y is
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nilpotent, since every quasinilpotent operator on a finite dimensional space is nilpo-
tent. The classes ®(X), ®_(X), ®(X), BL(X), B_(X), B(X), W+ (X), W_(X)
and W(X) belong to the class of essentially Kato operators [27, Theorem 16.21]. For
T € L(X), the Kato spectrum, the essentially Kato spectrum, the Kato type spectrum
and the generalized Kato spectrum are defined by

ox(T) ={r € C: T — A is not Kato},

oex(T) = {1 € C: T — X isnot essentially Kato},
ok:(T) ={x € C: T — X is not of Kato type},
ogk (T) ={r € C: T — X\ does not admit a GKD},

respectively. Clearly,
0gk (T) Cogi(T) C ek (T) Cox(T) C 0ap(T) N osu(T). (2.1

The quasinilpotent part Hy(T) of an operator T € L(X) is defined by
Ho(T) = {x €X: lim ||T"x|'" = 0} .
n—400o

It is easy to verify that Hy(T) = {0} if T is bounded below. An operator T € L(X) is
quasinilpotent if and only if Hy(T) = X [1, Theorem 1.68].

The analytical core of T, denoted by K (T'), is the set of all x € X for which there
exist ¢ > 0 and a sequence (x,), in X satisfying

Txi=x, Txy,y1 =x, forall n €N, |x,|| <c"|x]| forall n € N.

If T is surjective, then K(7') = X [1, Theorem 1.22].
An operator T € L(X) is said to be generalized Drazin invertible, if there exists
B € L(X) such that

TB =BT, BTB=B, TBT —T isquasinilpotent.
The generalized Drazin spectrum of 7 € L(X) is defined by
oyp(T) ={k € C: T — Ais not generalized Drazin invertible}.
The equivalent conditions to the existence of generalized Drazin inverse of a bounded

operator are collected in the following theorem.

Theorem 2.1 (see [8,19,20,25,28]) Let T € L(X). The following conditions are
equivalent:

(i) T is generalized Drazin invertible;
(ii) There exists a bounded projection P on X which commutes with T such that
T + P is invertible and T P is quasinilpotent;
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(iii) 0 ¢ acco (T);

(iv) There is a bounded projection P on X such that R(P) = Ho(T) and N(T) =
K(T);

(v) There exists (M, N) € Red(T) such that Ty is invertible and Ty is quasinilpo-
tent;

(vi) X = K(T) & Ho(T) with at least one of the component spaces closed.

For a subspace M of X its annihilator M~ is defined by
Mt ={feX : f(x)=0forall x € M}.
Recall that if M is closed, then
dimM~* = codim M. (2.2)
Let M and L be two subspaces of X and let
8(M, L) =sup{dist(u,L) :u € M, ||u] =1},

in the case that M # {0}, otherwise we define 6 ({0}, L) = O for any subspace L. The
gap between M and L is defined by

S(M, L) =max{§(M, L), (L, M)}.
It is known that [27, corollary 10.10]
S(M, L) <1 = dimM = dimL. (2.3)
If M and L are closed subspaces of X, then [27, Theorem 10.8]
ML, LYy =8M, L). (2.4)

Therefore, for closed subspaces M and L of X, according to (2.2), (2.3) and (2.4),
there is implication

(M, L) <1 => codim M = codim L. (2.5)

We use the following notation.

Rj = 04 (X) Ry = &_(X) R; = &(X)
Ry = Wi (X) Rs = W_(X) R = W(X)
R7 = B4(X) Rg = B_(X) Ry = B(X)

Rjg = M(X) Rj| = Q(X) Rip =L(X)~!
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The sets R;, 1 < i < 12, are open in L(X) and contain L(X)_1 (for the openness
of the set of upper (lower) semi-Browder operators see [21, Satz 4]). The spectra
or,(T)={2eC:T —-A¢R;},1 <i <12, are non-empty and compact subsets of
C. We write og, (T) = 09, (T), oR,(T) = 0¢_(T), etc, and pp_ (T) = C\oo, (T),
po_(T) = C\oo_(T), etc. In particular, og,((T) = 04p(T), or,,(T) = 05, (T),
Pap(T) = C\oyp(T) and pg, (T) = C\oy, (T'). We consider the following classes of
bounded linear operators:

there exists (M, N) € Red(T) such that

gDR; = {T €L(X): Ty € R; and Ty is quasinilpotent

}, I <i<12.

If Ty mentioned in this definition is nilpotent then it is said that T belongs to the class
DR;, 1 <i < 12.Itis clear that R; C DR; C gDR;, 1 <i < 12.

We shall say that T € L(X) is generalized Drazin upper semi-Fredholm (resp.
generalized Drazin lower semi-Fredholm, generalized Drazin Fredholm, generalized
Drazin upper semi-Weyl, generalized Drazin lower semi-Weyl, generalized Drazin
Weyl, generalized Drazin bounded below, generalized Drazin surjective) if T €
gD®.(X) (resp. gD®_(X), gDP(X), gDW, (X), gDW_(X), gDW(X), gDM(X),
gDO(X)). The reason for introducing these names is that all these classes generalize
the class of generalized Drazin invertible operators and, as we will see, may be char-
acterized in a similar way as the class of generalized Drazin invertible operators. We
remark that pseudo B-Fredholm operators and generalized Drazin Fredholm operators
coincide, as well as, pseudo B-Weyl operators and generalized Drazin Weyl operators.

The following technical lemma will be useful in the sequel.

Lemma 2.2 Let T € L(X) and (M, N) € Red(T). The following statements hold:

(1) T eRjifandonly if Tyy e Riand Ty € R;, 1 <i <3o0r7 <i <12, andin
that case ind(T) = ind(Tyy) + ind(Ty);
) IfTy e Riand Ty e R, then T e R;, 4 <i <6;
(i) If T € R; and Ty is Weyl, then Ty € R;j, 4 <i <6.

Proof (i): Fromtheequalities N(T) = N(Ty)®N(Ty)and R(T) = R(Ty)BR(Tw)

it follows that ¢ (T) = a(Ty)+a(Ty) and B(T) = B(Ty )+ B(Tn). Itimplies that
a(T) < ooifandonlyifa(Tys) < coanda(Ty) < oo,andalso, B(T) < ooifand
only if B(Ty) < oo and B(Ty) < oo. It is known that R(T) is closed if and only
if R(Tyr) and R(Ty) are closed [13, Lemma 3.3]. Therefore T is bounded below
(surjective, upper semi-Fredholm, lower semi-Fredholm) if and only if T; and Ty
are bounded below (surjective, upper semi-Fredholm, lower semi-Fredholm), and
in that case ind(T) = «(T) — B(T) = («(Tm) +a(Tn)) — (B(Tm) + B(TN)) =
ind(Ty) + ind(Ty).
Since N(T") = N(Ty) ® N(Ty), for every n € N, we conclude that
asc(T) < oo if and only if asc(Ty) < oo and asc(Ty) < oo, with asc(T) =
max{asc(Ty), asc(Ty)}. Similarly, as R(T") = R(Ty;) @ R(Ty), n € N, we
get that dsc(T) < oo if and only if dsc(Ty) < oo and dsc(Ty) < oo, with
dsc(T) = max{dsc(Tys), dsc(Ty)}.

(>i1): Follows from (i).
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(iii): Suppose that T € W, (X) and that Ty is Weyl. According to (i) it follows that
Ty € ®4(X) and ind(Tys) = ind(Tys) + ind(Ty) = ind(T) < 0. Thus Ty, is
upper semi-Weyl. The cases i = 5 and i = 6 can be proved similarly. O

3 Main Results

We start with the result which is proved in [30] using topological uniform descent.

Lemma 3.1 ([30], Lemma 2.4) If T € L(X) admits a GKD(M, N), then there exists
a positive constant € > 0, such that

(i) T — Ais Kato forall 0 < |A| < €;
1) a(T — 1) =a(Ty) <a(T) forall0 < |A| < €;
(i) B(T —A) = B(Ty) < B(T) forall0 < |A| < €.

It is worth noticing that it can be also derived using the gap theory. Namely, let
T € L(X) admit a GKD(M, N). Then, for every 0 # A € C it holds

a(T —A) =a(Ty —A) +a(Ty — 1) =a(Ty — 1), 3.

since Ty is quasinilpotent. Also, according to [27, Corollary 12.4], Tyy — A is
Kato for all A in a neighborhood of 0. From [27, Theorem 12.2] it follows that
limy ¢ S(N(TM), N (Ty — X)) = 0 and hence, there exists € > 0 such that Ty, — X\ is
Kato and S(N(TM), N(Tpy — 1)) < 1forall |A| < €. Applying (2.3), for all [A| < €,
we obtain dimN (Ty — A) = dimN (Ts). Now, we use (3.1) and get the statement (ii)
of Lemma 3.1. The statement (iii) can be proved similarly by using the implication
(2.5).

The following proposition will be used frequently in this article, but we omit its
proof since it easily follows from Lemma 3.1 and [27, Lemma 20.9].

Proposition 3.2 Let T € L(X). Then the following implications hold:

(1) If T is Kato and 0 € acc po_ (T) (0 € acc po_(T)), then T is upper (lower)
semi-Fredholm;

(i) If T is Kato and O € acc pyy, (T) (0 € acc pyy_(T)), then T is upper (lower)
semi-Weyl;

(iii) If T is Kato and 0 € acc pqp(T) (0 € acc pg,(T)), then T is bounded below
(surjective);

(iv) If T is Kato and 0 € acc pp, (T) (0 € acc pg_(T)), then T is bounded below
(surjective).

Proposition 3.3 Let T € L(X) and 1 <i < 12. If T belongs to the set gDR;, then
0 ¢ accog,(T).

Proof Let (M, N) € Red(T) such that Tj; € R; and Ty is quasinilpotent. Since R;
is open, there exists € > 0 such that (T — A)yy = Tyy — 2 € R; for |A| < €. On the
other hand, (T — A)y = Ty — A € L(X)~! C R; for every A # 0. Now by applying
Lemma 2.2 we obtain that 7 — A € R; for 0 < [A| < €, and so 0 ¢ accog, (T). m|
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We now state the first main result.

Theorem 3.4 Let T € L(X)and 1 <i < 6. The following conditions are equivalent:

(1) There exists (M, N) € Red(T) such that Tyy € R; and Ty is quasinilpotent, that
is T € gDR;;
(ii) T admits a GKD and 0 ¢ accog,(T);
(iii) T admits a GKD and 0 ¢ intog,(T);
(iv) There exists a projection P € L(X) that commutes with T suchthatT + P € R;
and T P is quasinilpotent.

Proof (1) = (ii): Let T = Ty @ Ty, where T)y € R; and Ty is quasinilpotent.
Then 0 ¢ accog,(T) by Proposition 3.3. From [27, Theorem 16.21] it follows
that there exist two closed T-invariant subspaces M| and M> such that M =
M| @ M>, M;is finite dimensional, Ty, is Kato and T}, is nilpotent. We have
X =M & M>y®N), My ® N isclosed, Tm,on = Tm, ® T is quasinilpotent
and thus 7' admits the GKD (M, M> & N).

(ii) = (iii): Clear.

(iii) = (1): Let i € {1, 2, 3}. Assume that 7 admits a GKD and 0 ¢ intog,(T),

that is 0 € acc pg,(T'). Then there exists (M, N) € Red(T) such that Ty is
Kato and Ty is quasinilpotent, and also, because of 0 € acc pg, (T'), according to
Lemma 2.2(i), it follows that O € acc pR, (T ). From Proposition 3.2(i) it follows
that )y € R;, and so T € gDR,.
Suppose that 7 admits a GKD and 0 ¢ intoyy, (T), i.e. 0 € acc pyy, (T). Then
there exists (M, N) € Red(T) such that T), is Kato and Ty is quasinilpotent.
We show that 0 € acc pyy, (Ty). Let € > 0. From 0 € acc pyy, (T) it follows
that there exists A € C such that 0 < |[A] < e and T — X € Wy (X). As
Ty is quasinilpotent, Ty — A is invertible, and so, according to Lemma 2.2(iii),
we conclude that Tyy — A € Wi (M), that is A € pyy, (Ty). Therefore, 0 €
acc pyy, (Ty) and from Proposition 3.2(ii) it follows that T} is upper semi-Weyl,
and so 7" € gDW_, (X). The cases i = 5 and i = 6 can be proved similarly.

(i) = (iv): Suppose that there exists (M, N) € Red(T) such that T); € R; and
Ty is quasinilpotent. Let P € L(X) be a projection such that N(P) = M and
R(P) = N.Then TP = PT and every element x € X may be represented as
X = x1 + xp, where x; € M and x € N. Also,

1 1 1
1T P) x|l = IT" Px|" = [(Tn)"x2|l" — 0 (n — 00),

since Ty is quasinilpotent. We obtain Hy(7T P) = X, so T P is quasinilpotent.
Since (T + P)y = Ty and (T + P)y = Ty + Iy € L(N)~!, where Iy is
identity on N, we have that (T + P)y € R; and (T + P)n € R; and hence,
T + P € R; by Lemma 2.2(i) and (ii).

(iv) = (i): Assume that there exists a projection P € L(X) that commutes with T
suchthat 7+ P € R; and T P is quasinilpotent. Put N(P) = M and R(P) = N.
Then X =M @& N, T(M) C M and T(N) C N. For every x € N we have

I(Ty)"x |7 = |T" P"x|[# = [[(T P)"x||7 — 0 (n — 00),
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since T P is quasinilpotent. It follows that Hy(7y) = N and hence, Ty is
quasinilpotent. It remains to prove that T)y € R;. For i € {1,2,3}, by
Lemma 2.2(i) we deduce that Tyy = (T + P)y € R;. Set i = 4. Since Ty
is quasinilpotent, it follows that T + I is invertible, where I is identity on
N.From T 4+ P € W, (X) and the decomposition

T+P=T+P)y®T+P)n=Ty®(INn+ Iy),

according to Lemma 2.2(iii), we conclude that Ty € W, (M). Fori = 5 and
i = 6 we apply similar consideration. O

Jiang and Zhong show in [13, Theorem 3.5 and Theorem 3.9] thatif T —Ag € L(X)
admits a GKD, o,,,(T') (05, (1)) does not cluster at A if and only if A is not an interior
point of a4, (T') (05, (T)). Corollary 3.5 extend this result to the cases of the essential
spectra, while in Theorems 3.6 and 3.7 we provide further conditions that are equivalent
to those mentioned above.

Corollary 3.5 Let T € L(X) and 1 <i < 6. If T — Ao admits a generalized Kato
decomposition, then og, (T') does not cluster at A if and only if Ly is not an interior
point of or,; (T).

Proof Follows from the equivalence (ii)<=(iii) of Theorem 3.4. O

Theorem 3.6 Let T € L(X). The following conditions are equivalent:

(i) Ho(T) is closed and there exists a closed subspace M of X such that
(M, Hyo(T)) € Red(T) and T (M) is closed;
(i1) There exists (M, N) € Red(T) such that Ty is bounded below and Ty is
quasinilpotent, that is T € gDM(X);
(iii) T admits a GKD and 0 ¢ acc o4, (T);
(iv) T admits a GKD and 0 ¢ int o, (T);
(v) There exists a bounded projection P on X which commutes with T such that
T + P is bounded below and T P is quasinilpotent;
(vi) There exists (M, N) € Red(T) such that Ty is upper semi-Browder and Ty is
quasinilpotent, that is T € gDB, (X);
(vii) T admits a GKD and 0 ¢ accop, (T);
(viii) T admits a GKD and 0 ¢ intog, (T);
(ix) There exists a bounded projection P on X which commutes with T such that
T + P is upper semi-Browder and T P is quasinilpotent.
In particular, if T satisfies any of the conditions (1)—(iX), then the subspace N
in (ii) is uniquely determined and N = Hy(T).

Proof (1) = (ii): Suppose that Hy(T) is closed and that there exists a closed 7 '-
invariant subspace M of X such that X = Hy(T) & M and T (M) is closed. For
N = Ho(T) we have that (M, N) € Red(T) and Hy(Ty) = N, which implies
that T is quasinilpotent. From N(Ty) = N(T) "M C Ho(T) " M = {0} it
follows that T, is injective and since R(Tys) = T (M) is a closed subspace in M,
we conclude that T}, is bounded below.
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(i) = (1): Assume that there exists (M, N) € Red(T) such that Tj; is bounded
below and Ty is quasinilpotent. Then (M, N) is a GKD for 7', and so from [1,
Corollary 1.69] it follows that Hy(T) = Ho(Ty) ® Ho(Ty) = Ho(Ty) © N.
Since Ty is bounded below, we get that Hy(T37) = {0} and hence Hy(T) = N.
Therefore, Hy(T) is closed and complemented with M, (M, Hy(T')) € Red(T),
and T (M) is closed because T, is bounded below.

The implications (ii)) = (iii) and (vi) == (vii) can be proved analogously to
the proof of the implication (i) = (ii) in Theorem 3.4. The implications (iii)
— (iv) and (vii) = (viii) are clear.

(viii) = (ii): Let T admita GKD and letO ¢ intog, (T),i.e. 0 € acc pg, (T). There
exists (M, N) € Red(T) such that Ty, is Kato and Ty is quasinilpotent. From
0 € acc pp, (T) it follows that O € acc pp, (Ty) according to Lemma 2.2(i).
From Proposition 3.2(iv) it follows that 7, is bounded below, and hence T €
gD M (X).

(iv) = (ii): This implication can be proved by using Proposition 3.2(iii), analo-
gously to the proof of the implication (viii) = (ii).

(ii)) = (vi): Follows from the fact that every bounded below operator is upper
semi-Browder.

The equivalences (v) <= (ii) and (vi) <= (ix) can be proved analogously to
the equivalence (i) <= (iv) in Theorem 3.4. O

Theorem 3.7 For T € L(X) the following conditions are equivalent:

(i) K(T) is closed and there exists a closed subspace N of X such that N C Ho(T)
and (K(T), N) € Red(T);
(i1) There exists (M, N) € Red(T) such that Ty is surjective and Ty is quasinilpo-
tent, that is T € gDQO(X);
(iii) T admits a GKD and 0 ¢ acc oy, (T);
@iv) T admits a GKD and 0 ¢ int o, (T);
(v) There exists a bounded projection P on X which commutes with T such that
T + P is surjective and T P is quasinilpotent;
(vi) There exists (M, N) € Red(T) such that Ty is lower semi-Browder and Ty is
quasinilpotent, that is T € gDB_(X);
(vii) T admits a GKD and 0 ¢ accop_(T),
(viii) T admits a GKD and 0 ¢ intog_(T);
(ix) There exists a bounded projection P on X which commutes with T such that
T + P is lower semi-Browder and T P is quasinilpotent.
In particular, if T satisfies any of the conditions (1)—(ix), then the subspace M
in (i1) is uniquely determined and M = K (T).

Proof (1) = (ii): Assume that K(7T) is closed and that there exists a closed T -
invariant subspace N, such that N C Ho(T)and X = K(T)@® N.For M = K(T)
we have that (M, N) € Red(T), R(Tyy) = R(T)NM = R(T)NK(T) = K(T) =
M, and so Ty, is surjective. Since Hy(Ty) = Ho(T) N N = N, we conclude that
T is quasinilpotent.

(ii)) == (i): Suppose that there exists (M, N) € Red(T) such that T, is surjective
and Ty is quasinilpotent. Then (M, N) is a GKD for T and from [1, Theorem
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1.41] we obtain that K(T) = K(Ty). Since Ty, is surjective, it follows that
K(Ty) = M, and so K(T) = M and K(T) is closed. Thus (K(T), N) €
Red(T) and since Ty is quasinilpotent, we have that N = Ho(Ty) C Ho(T).

The rest of the proof is similar to the proofs of Theorems 3.6 and 3.4. O

Remark 3.8 If T is generalized Drazin invertible, then from Theorem 2.1 and Theo-
rem 3.6 it follows that T is generalized Drazin bounded below and in that case the
closed subspace M of X which satisfies the condition (i) in Theorem 3.6, i.e. such that
(M, Hy(T)) € Red(T) and T (M) is closed, is uniquely determined-we show that it
must be equal to K (7). In other words, the projection P which satisfies the condition
(v) in Theorem 3.6 is uniquely determined-it is equal to the spectral idempotent of 7
corresponding to the set {0}.

Indeed, from Theorem 3.6 it follows that T = Ty @ Ty 7y, Ty is bounded below
and Ty, () is quasinilpotent. Since T is generalized Drazin invertible, we have that 0 ¢
acc o (T), and hence, 0 ¢ acc o (Tyy). Ty is Kato since it is bounded below, and so by
Proposition 3.2(i) we obtain that T}, is invertible. Since T admits a GKD (M, Hy(T)),
from [1, Theorem 3.15] it follows that M = K (7). The similar observation can be
stated in the context of Theorem 3.7.

In the following theorem we give several necessary and sufficient conditions for
T € L(X) to be generalized Drazin invertible.

Theorem 3.9 Let T € L(X). The following conditions are equivalent:

(i) T is generalized Drazin invertible;
(ii) T admits a GKD and 0 ¢ into (T);
(iii) T admits a GKD and 0 ¢ intog(T);
(iv) T admits a GKD and 0 ¢ accop(T),
(v) There exists (M, N) € Red(T) such that Ty is Browder and Ty is quasinilpo-
tent;
(vi) There exists a bounded projection P on X which commutes with T such that
T + P is Browder and T P is quasinilpotent.

Proof Similar to the proof of Theorem 3.6. O

From the equivalences (iii)<=>(iv) in Theorems 3.6, 3.7 and 3.9 it follows that the
assertion of Corollary 3.5 holds also for 7 < i < 12.

Remark 3.10 Let T € L(X) be a Riesz operator with infinite spectrum. The spectrum
of T is a sequence converging to 0, 0 (T') = 04,(T) = 0y, (T) and og,(T) = {0},
1 <i <9.Itfollows thatO ¢ intog,(T) =¥,1 <i < 12,and 0 ¢ accog,(T') = ¥,
1 < i < 9. On the other hand, it was shown in [13] that 7 does not admit a GKD.
It means that the condition that the operator admits a GKD in the statements (iv),
(vii) and (viii) of Theorems 3.6 and 3.7, as well as in the statements (ii), (iii) and (iv)
of Theorem 3.9 and also, in the statements (ii) and (iii) of Theorem 3.4, can not be
omitted.

The following question is natural.
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Question 3.11 Does an operator which does not admit a GKD and such that 0 is not
an accumulation point of its approximate point (resp. surjective) spectrum exist? If
the answer is affirmative, then it means that the condition that 7 admits a GKD in the
statements (iii) of Theorems 3.6 and 3.7 can not be omitted.

Theorem 3.8 in [ 13] is equivalent to the following assertion: if 0 is a boundary point
of o(T), then T admits a GKD if and only if T is generalized Drazin invertible, that
is T = Ty @ Ty where O ¢ o (Ty) and Ty is quasinilpotent. The following corollary
shows that the previous assertion can be extended to the cases of essential spectra,
as well the approximate point and surjective spectrum, in other words, this assertion
remains true if we replace the ordinary spectrum by og,,i =1, ..., 11.

Corollary 3.12 Let T € L(X) and let 0 € dog,(T), 1 < i < 12. Then T admits a
generalized Kato decomposition if and only if T belongs to the class gDR;, that is
T =Ty ® Tn, where O ¢ or,(Ty) and Ty is quainilpotent.

Proof Follows from the equivalence (i)<=(iii) in Theorem 3.4, the equivalences
(ii))<=(iv) in Theorems 3.6 and 3.7, the equivalence (i)<=>(ii) in Theorem 3.9. O

Remark 3.13 From the equivalences (i)<=>(ii) in Theorem 3.4, (ii)<=>(iii) in The-
orems 3.6 and 3.7, (i)<=>(iii) in Theorem 2.1, it follows equalities:

gD®(X) = gD®, (X) Ngh®_(X),
gDW(X) = gDW,(X) NgDW_(X),
L(X)XP = gDM(X) N gDQ(X).

The inclusions L(X)X? c gDM(X) and L(X)XP c gDQ(X) may be strict.

Example 3.14 Let Ny = N U {0} and let CN0 be the linear space of all complex
sequences x = (xk),‘zozo. Let €, ¢ and ¢y denote the set of bounded, convergent and
null sequences. We write £, = {x € CcNo . Y oo lxXkl? < oo} for 1 < p < oo. For
n=0,12,..., let ™ denote the sequences such that e,(,n) = 1 and e,((n) = 0 for

k # n. The forward and the backward unilateral shifts U and V are linear operators
on CYo defined by

Ue™ =t and ve®tD —e™ 5 —0,1,2,....

Foreach X € {co, ¢, €0, £p},p = 1,U,V € L(X),VU =Ilando(U) =0 (V) =D,
where D = {A € C: |A| < 1}. Thus, U is bounded below (and thus U is generalized
Drazin bounded below) and since 0 € acc o (U), U is not generalized Drazin invertible.
Also, V is surjective (and hence V is generalized Drazin surjective) and V is not
generalized Drazin invertible.

The following remark enables us to give another example.

Remark 3.15 Let T € L(X) and (M, N) € Red(T) such that Ty, is bounded below
(resp. surjective) and Tl is finite rank projection. Set R(Ty) = Ny and N(Ty) = N».
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Then Ny @ N> = N, dimN;| < oo, Ty, is identity and Ty, is zero operator. Also,
it is easy to see that X = (M @ N;) & No, M & N, is closed and that Tygn, 1S
bounded below (resp. surjective), hence T is generalized Drazin bounded below (resp.
generalized Drazin surjective).

Example 3.16 Let X, U and V be as in Example 3.14. Let us introduce an operator
P:X— Xas

P(x1’x25x37"‘)=(x15070?"‘)7 (x17x29'x37"') EX‘

It is clear that P is bounded linear projection, dimR(P) = 1 and o (P) = {0, 1}. We
consider the operator 7 = U @ P. From o(T) = o (U) U o (P) = D we see that T
is not generalized Drazin invertible since 0 is an accumulation point of its spectrum.
Since U is bounded below, applying Remark 3.15, we obtain that 7 is generalized
Drazin bounded below. Since 0,4, (T) = 04qp(T) U 04p(P) = 0D U {0}, T is not
bounded below.

A similar consideration shows that V @ P is generalized Drazin surjective, but not
generalized Drazin invertible and not surjective.

We also show that the inclusions gD M (X) C gDW, (X) and gDQ(X) C gDW_(X)
can be proper.

Example 3.17 Let U and V be as in Example 3.14 and let T = U & V. Then,
according to Lemma 2.2(i), T is Fredholm and ind(7") = ind(U) +ind(V) = 0. Thus
T is Weyl and hence, T is generalized Drazin Weyl. Since 04, (U) = 04, (V) = 0D
and oy, (U) = 04p(V) = D, it follows that o4, (T) = 04p(U) U 04p(V) = D and
o5u(T) = 05, (U) U 05, (V) = D. Therefore, 0 € acc o,,(T) and 0 € acc oy, (T) and
from Theorems 3.6 and 3.7 it follows that T is neither generalized Drazin bounded
below nor generalized Drazin surjective.

Remark 3.18 We remark that

Q. (X)\W4(X) C gD®(X)\gDW, (X),
C_(X)\W-(X) C gD®_(X)\gDW_(X),
(X)) \W(X) C gD®(X)\gDW(X).

Indeed, the set @ (X)\W4(X) = {T € ®(X) : ind(T) > 0} is open since the
index is locally constant. Hence the set oy, (T)\oo, (T) = po, (T)\pw, (T) is
open for every T € L(X). Let T € & (X)\W4+(X). Then T € gD®(X) and
0 € ow, (T)\oo, (T). There exists € > 0 such that D(0,¢) C ow, (T)\oo_(T).
Hence, 0 € accoyy, (T) and T ¢ gDW, (X) according to Theorem 3.4. Similarly for
the remaining inclusions.

The next example shows that the inclusions gDW, (X) C gD®, (X), gDW_(X) C
gD®_(X) and gDW(X) C gD®(X) can be proper.

Example 3.19 Let U and V be as in Example 3.14. The operators U and V are
Fredholm, ind(U) = —1 and ind(V) = 1. Therefore, U € o_(X)\W-_(X)
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and V € & (X)\W4(X), and also U,V € O(X)\W(X). Hence, according to
Remark 3.18, U € gD®_(X)\gDW_(X), V € gD®_(X)\gDW,(X)and U,V €
gD®(X)\gDW(X).

Proposition 3.20 Let T € L(X). If T € gDR;, then T" € gDR,; for everyn € N,
1<i<I2

Proof Let T € gDR; and n € N. Then there exists (M, N) € Red(T) such that
Ty € R; and Ty is quasinilpotent. It implies 7" = Ty, @ Ty, Tjy € R;, 1 <i <12,
and T is quasinilpotent. Consequently, 7" € gDR;. O

In order to prove the opposite implication we need the following consideration.
If T € L(X) and if f : U — C is analytic in a neighbourhood U D> o(T),
then acco (f(T)) C f(acco(T)); see proof of [9, Theorem 2]. In addition, if f
is non-constant on every component of U, then the opposite inclusion is also true,
i.e.acco(f(T)) = f(acco(T)) [11, Lemma 2.3.2]. The important moment in their
proofs is the fact that o (T") is a compact set and that it satisfies the spectral mapping
theorem. We recall that the spectra og, (T), i € {1,2,3,7, 8,9, 10, 11, 12}, are com-
pact and satisfy the spectral mapping theorem, so using a similar method as in the
references mentioned above we can conclude that the analogous assertion holds for
these types of spectra.

Lemma 3.21 [f p is a nontrivial complex polynomial and ifi € {1,2,3,7,8,9, 10,
11, 12}, then
accor,; (p(T)) = p(accog,(T)). 3.2)

Applying formula (3.2) for p(¢) =", n € N, gives

0 ¢ accog,(T) < 0 ¢ accog,(T"), i€{1,2,3,7,8,9,10,11,12}, n e N.
(3.3)

Proposition 3.22 Let T € L(X) admit a GKD. If T" < gDR; for some n € N, then
T € gDR;, wherei € {1,2,3,7,8,9, 10, 11, 12}.

Proof Suppose that 7 admits a GKD and that 7" € gDR; for some n € N. Then,
0 ¢ accor,(T"),and also O ¢ acc og, (T') according to (3.3). We apply Theorems 3.4,
3.6,3.7 or 3.9 and obtain T € gDR;. |

4 The Classes DR;

Analysis similar to that in the proof of Theorem 3.4 gives the following result.

Theorem 4.1 Let T € L(X) and 1 < i < 12. The following conditions are equiva-
lent:

(i) There exists (M, N) € Red(T) such that Tyy € R; and Ty is nilpotent, that is

T € DR;;
(ii) T is of Kato type and 0 ¢ accor,(T);
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(iii) T is of Kato type and O ¢ int oR,(T);
(iv) There exists a projection P € L(X) that commutes with T suchthatT + P € R;
and T P is nilpotent.

Theorem 2.9 in [2] is equivalent to the following assertion: if 0 is a boundary point of
o (T), then T is of Kato type if and only if T is Drazin invertible, thatis T = Ty & Ty
where 0 ¢ o(Ty) and Ty is nilpotent. The following corollary shows that in the
previous assertion the ordinary spectrum can be replaced by og;,i =1, ..., 11.

Corollary 4.2 Let T € L(X) and let O € dog,(T), 1 <i < 12. Then T is of Kato
typeifand only if T belongs to the class DR, thatis T = Ty ®Tn, where 0 ¢ or, (Ty)
and Ty is nilpotent.

Proof Follows from the equivalence (i)<=>(iii) in Theorem 4.1. O

Remark 4.3 Using [3, Theorem 2.7] and [5, Lemma 4.1] we see thatif i =3 (i = 6)
then the conditions (i)—(iv) of Theorem 4.1 are equivalent to the fact that 7' is B-
Fredholm (7 is B-Weyl), while if i = 12 these conditions are equivalent to the fact
that T is Drazin invertible.

Similar to the definitions of the B-Fredholm and B-Weyl operators, the classes BR;
are introduced and studied [4]. In what follows we want to connect the classes DR;
and BR; for other values of i, but some preparation is needed first. For the case of a
Hilbert space see [4, Theorem 3.12].

We recall that for every linear operator 7' acting on a Banach space X and every
n € Ny the operator T;, : R(T") — R(T") is defined as T,x = Tx for x € R(T").
Clearly, 7, is linear operator and Ty = T'. Further, let ¢),(T) = dimN (T /N(T™)
and ¢,(T) = dimR(T”)/R(T"‘H). According to [16, Lemmas 1, 2], ¢, (T) =
dim(N(T)NR(T™)) and ¢, (T) = codim (R(T)+ N(T™)), so the sequences (¢, (T))n
and (¢, (T)), are non-increasing. In particular, cé(T) =«a(T)and co(T) = B(T). The
sequence ((k, (7)), is given by

kn(T) = dim(R(T") N N(T))/(R(T"*') N N(T))
and equivalently
kn(T) = dim(R(T) + N(T"*1) /(R(T) + N(T")).
From this it is easily seen that
¢y (T) = kn(T) + ¢,y (T) and ¢y (T) = kn(T) + cnp1(T), 4.1

and that an operator T € L(X) is Kato if and only if R(T) is closed and k; (7)) = 0
foralli > 0.

Remark 4.4 (i) Suppose that X is a Banach space and let T € L(X). If (M, N) €
Red(T) and if Ty is nilpotent, then the following statements are equivalent.
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(a) asc(T,) < oo for every n € Ny;
(b) asc(T,) < oo for some n € Ny;
(c) asc(Ty) < oo. The implication (a) = (b) is obvious.

(b) = (c¢): Let asc(7,,) < oo for some n € Ny. It is evident that c/p(Tn) = 0 for
some p. From [4, Lemma 3.1] it follows that ¢}, (1) = c},(Tn) = 0 and therefore
asc(T) < oo. According to the proof of Lemma 2.2, we get asc(Tyy) < oo.
(c) = (a): Suppose that asc(Ty;) < oo and let n € Ny. Since Ty is nilpotent then
asc(Ty) is finite, and thus asc(7T") < oo by the proof of Lemma 2.2. There exists p > n
such that c;,(T) = 0. From [4, Lemma 3.1] it follows c/p_n(Tn) = c/p(T) =0, and
thus asc(7,) < oo.

Similarly, if (M, N) € Red(T) and if Ty is nilpotent, then the following statements
are equivalent.

(a) dsc(T,) < oo for every n € Np;
(b) dsc(T;,) < oo for some n € No;
(c) dsc(Ty) < oo.

(ii) If 7, is upper (resp. lower) semi-Fredholm for some n > 0 then R(7"™) is closed,
T,,, is upper (resp. lower) semi-Fredholm and ind(7},,) = ind(7},) foreverym > n

[6].

The following proposition connects the classes BR; and DR;, fori € {1, 2,4, 5, 7,
8, 10, 11}, in the context of a Banach space.

Proposition 4.5 Let X be a Banach space. If T € L(X) andi € {1,2,4,5,7,8, 10,
11} then the following statements are equivalent.

(1) T is of Kato type and T € BR;;
(ii) T € DR;.

Proof (1) = (ii): Suppose that T is of Kato type and that 7 € B®_ (X). There exist
two closed T -invariant subspaces M and N such that X = M @ N, T, is Kato and
Ty is nilpotent of degree d. Also, there exists n > 0 such that R(T") is closed and
T, is upper semi-Fredholm. From ¢}, (T) = dim(N(T) N R(T™)) = a(T,) < oo
and from the fact that (c,’{(T))k is a non-increasing sequence, there exists p >
max{d, n} such that ¢,(T) = ¢}, |(T) = --- < oo. It follows that Ty =0,
) c/p(TN) = 0 and thus c/p(TM) = c/p(TM) + c/p(TN) = c;,(T) < oo. Since
kj(Ty) = 0 for each j > 0 then (4.1) gives a(Ty) = cy(Ty) = c;,(TM) < 0.
Since T has closed range, it follows that Ty, is upper semi-Fredholm.

In addition, if T € BM(X), then ¢, (T) = a(T,) = 0, so a(Ty) = c;,(TM) =
c;,(T) = 0, and hence T); is bounded below. Further, if T € BB, (X), then T}y is
upper semi-Browder by Remark 4.4.

Let T € BW4(X). It follows that R(T?) = R((Ty)?) C M, R(T?) is closed
and ind(7T,) = ind(7,,) < 0. Since Ty is upper semi-Fredholm, then ind(T);) =
ind((Ty)p), where (Ty)p, @ R((Tm)?) — R((Ty)?). It is evident that T, =
(Tm) p, hence ind(Ty) = ind((Ty)p) = ind(Tp) = ind(T,) < 0,1ie. Ty €
Wi(X),s0T € DW(X).

The remaining part can be proved similarly.



1442 M. D. Cvetkovié, S. C. Zivkovié-Zlatanovié

(i) = (i):Let T € DW,(X). There exists (M, N) € Red(T) such that Ty, is upper
semi-Weyl and Tl is nilpotent. Then R(7'?) is closed and R(T?) = R((Ty)?) C
M for sufficiently large p. From T}, = (T)) , we conclude that T}, is upper semi-
Fredholm and ind(7),) = ind((Tux) ) = ind(T)s) < 0. It means that T, is upper
semi-Weyl, so T € BW, (X). Using the similar technique we can prove the
remaining part. O

If T € L(X) is again a Riesz operator with infinite spectrum, then 0 € oo (T) C
ok:(T), so T is not of Kato type. It means that the condition that T is of Kato type
can not be omitted from the statement (iii) of Theorem 4.1 for 1 <i < 12, as well as
from the statement (ii) of Theorem 4.1 if i € {1, 2, 3,4, 5,6, 7, 8, 9}. The following
example ensures that the condition that 7 is of Kato type in the statement (ii) of
Theorem 4.1 can not be omitted if i € {10, 11, 12}.

Example 4.6 Let Q : £2(N) — £>(N) be the operator defined by

1 1
Q(slv %‘2’ 53’ .. ) = <07 gl’ 5521 5535 .. ) ) (%—1’ 525 533 .. ) € EZ(N)

From lim,,_, o ||Q"||% = lim,,_wo(#)% = 0 we see that Q is quasinilpotent. It
follows that O is not an accumulation pbint of the spectrum (resp. approximate point
spectrum, surjective spectrum) of Q. Obviously, Q is the limit of finite rank operators
F,,n € N, given by

1 1
Fn(§1,$2»§3’ ) = (Ov glv 5527 D) ;%-n’ov 0, ) 5 ne Nv

and therefore Q is compact. Since Q" is compact and R(Q") is infinite dimensional,
we conclude that R(Q") is not closed for every n € N.

Suppose that Q is of Kato type, i.e. O = Oy D Oy with Oy Kato and Oy
nilpotent. For sufficiently large n we have that R(Q") = R((Qn)") is closed what is
not possible. Consequently, Q is not of Kato type.

5 Applications

For T € L(X) we define the spectra with respect to the sets gDR;, 1 <i <12,ina
classical way,

ogpRr,(T) ={+€C: T —A¢gDR;}, 1=<i=<I12
From Theorems 3.4, 3.6 and 3.7 it follows that

ogDR, (T) = ogk (T) Uaccog,(T)
= ok (T) Uintog, (T), 1 <i < 12. (5.1)
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The spectra opg,(7) are defined analogously. According to Theorem 4.1 and
Remark 4.3, we have

opo(T) = ok (T) Uintog(T) and opw(T) = ok (T) Uint oy (T). 5.2)

Clearly,
ogpo (T) C ogpw, (T) C ogpm(T) C  ogp(T)
¢ S
ok (T) C ogna (T) c  ogw(T) C  ogp(T)
C
ogpo_(T) C ogpw_(T) C ogpo(T) C  owu(T)

According to Remark 3.13 we have

ogpa(T) = ogpo, (T) U ogpe_(T),
GgDW(T) = OgDW, (1)U O’gDV\L(TL
0gp(T) = ogpm(T) U ogno(T).

From (5.1) it follows that if 7 € L(X) has the property that
oR, (1) = dow,(T),
then
ogk (T) = ogpRr,(T), 1 <i <12

Consequently, if o (T') is at most countable or contained in a line, then o,g (T) =
ogbR, (T) = ogp(T), 1 < i < 11. As examples of operators with the spectrum
contained in a line we mention self-adjoint and unitary operators on a Hilbert space.
The spectrum of polynomially meromorphic operator [15] is at most countable.

Proposition 5.1 Let T € L(X) and 1 <i < 12. The following statements hold:

(i) ogpRr,(T) C opr;(T) C or,(T) Co(T);
(i) ogpR, (T) is a compact subset of C;
(iii) or,;(T)\ogpRr, (T') consists of at most countably many isolated points.

Proof (i): It is obvious.

(i1): It suffices to prove that ogpg, (T) is closed since it is bounded by the part (i).
If Ao ¢ ogpR,(T), then T — A9 € gDR; and by Proposition 3.3 there exists
€ > Osuchthat T — X9 — A € R; C gDR,; for 0 < |A] < €. It means that
D (Ao, €) C C\ogpr, (T') and we can conclude that ogpg, (T') is closed.

(iii): If A € or,(T)\ogpR,(T), then A € og,(T) and T — 1 € gDR;. Applying
Proposition 3.3 we obtain that 1 € isoog,(T), and hence oR, (T)\ogpRr, (T')
consists of at most countably many isolated points. O

Corollary 5.2 Let T € L(X). Then the following inclusions hold:
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(i) accoyup(T)\accop, (T) C ogi (T),
(ii) accoy,(T)\accop_(T) C ogx (1),
(iii) acco(T)\accop(T) C ogx (1),
(iv) intog, (T)\intop, (T) C ogx (T),
(v) intog, (T)\intog_(T) C GgK(T);
(vi) into (T)\intop(T) C o,k (T).

Proof Follows from the equivalences (iii) <= (vii) and (iv) <= (viii) in Theo-
rems 3.6 and 3.7. m]

Remark 5.3 Let T € L(X) be a Riesz operator with infinite spectrum. As we men-
tioned earlier, 7 does not admit a GKD [13]. It is interesting to note that the same
follows from Corollary 5.2. Namely, og(7T) = {0} and so 0 ¢ accog(T), while
0 € acco (T). Therefore, 0 € acco (T)\accop(T') and hence 0 € o,k (T') by Corol-
lary 5.2.

We give an alternative proof of the inclusion
do(T)Nacco(T) Coex(T)

from Jiang and Zhong’s paper [13] (see Corollary 3.6 and Theorem 3.8) and establish
the inclusions of the same type for other spectra.

Theorem 5.4 Let T € L(X). Then the following inclusions hold:
dog; (T) Naccor,(T) Cogx(T), 1=<i <12 (5.3)
Moreover,

dop, (T) Nacc oy, (T) C ogg (T);
dop_(T) Naccog,(T) C o4k (T);
dop(T) Nacco(T) C ogx (T).

Proof From Theorems 3.9 and 2.1, the equivalence (iii)<=(iv) in Theorems 3.6 and
3.7 and the equivalence (ii)<=>(iii) in Theorem 3.4 it foollows that if T — A € L(X)
admits a GKD, then
A€intoR,(T) &= L €accor,(T), 1=<i <12
Therefore, we have the inclusions
doR,; (T) Naccor, (T) = accor, (T)\intog,(T) C ogx(T), 1 <i <12

Suppose that A € dog, (T) and T — A admits a GKD. Then A ¢ int op, (T)

and from the equivalence (viii)<=>(iii) in Theorem 3.6 we get that A ¢ acc o, (T).

Therefore, if A € dop, (T) N accoyp(T), then T — A does not admit a GKD, i.e.
A € 0gk (T'). The remaining inclusions can be proved analogously. O
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From (5.3) it follows that
doR;(T) C oy (T)Uisoog,(T), 1=<i=<12,
which implies that
dog, (T)\ogk (T) Cisoor,(T),

and hence 0oR, (T))\ogx (T') consist of at most countably many points.

The connected hull of a compact subset K of the complex plane C, denoted by nK,
is the complement of the unbounded component of C\K ([10, Definition 7.10.1]).
Given a compact subset K of the plane, a hole of K is a bounded component of C\ K,
and so a hole of K is a component of K\ K. Generally ([10, Theorem 7.10.3]), for
compact subsets H, K C C,

0HCKCH—=—0H C0K CKCHCnK=nH. 5.4)

If K € Cisat most countable, then C\ K is connected and hence, nK = K. Therefore,
for compact subsets H, K € C,

nK = nH — (H is at most countable <= K is at most countable), (5.5)

and in that case H = K.

Theorem 5.5 Let T € L(X). Then

dogpm(T) C dogpwy, (T) C dogpae, (T)
C
dogp(T) C dogpw(T) C dogna (T) C  dogk(T)
C

dogpo(T) C dogpw_(T) C dogpe_(T)

dogpa(T) C dogpe, (1), dogpa(T) C dogpe (1),
dogpw (T) C dogpwy, (T), d0gpy(T) C dogpyy_(T),

and

nogx (T) = nogpe, (T) = nogpw, (T) = nogpm(T)
= nogne_(T) = nogpw_(T) = nogpo(T)
= nogpe (1) = nogpw (1) = nogp(T). (5.6)
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Proof According to (5.4) it is sufficient to prove the inclusions

(1) dogp(T) C ogr(T); (i) dogpm(T) C ook (T);  (ii)dogpyy, (T) C
UgK(T);

(iv) dogpe, (T) C o4k (T); (V) dogno(T) C ogk (T); (vi) dogpwy_(T) C
ogk (T);

(vii) dogpe _(T) C o4k (T); (viil) dogpw(T) C ogk (T); (ix) dogpe(T) C
O'gK(T).

Suppose that Ag € dogp(T). Since o p(T) is closed, it follows that

Ao € 0gp(T) = oy (T)Uinto (T). 5.7

We prove that
Ao ¢ into (T). (5.8)

Suppose on the contrary that Ay € into (7). Then there exists an € > 0 such that
D(Xg,€) C o(T). This means that D(Xg,€) C into(T) and hence, D(Ag,€) C
ogp(T), which contradicts the fact that Ay € dogp(T). Now from (5.7) and (5.8), it
follows that Ag € o,k (T).

The inclusions (ii)-(ix) can be proved similarly to the inclusion (i). O

For A ¢ C it holds
A is at most countable <= acc A is at most countable. 5.9)

Proposition 5.6 Let T € L(X). Then o (T) is at most countable if and only if o4k (T)
is at most countable if and only if ogpr, (T) is at most countable for arbitrary i =
1,...,12, and in that case ogg (T) = ogp(T) = ogpr,(T), i = 1,..., 11

In particular, o (T) is a finite set ifand only if ook (T) = W if and only if ogpr, (T) =
@ for arbitraryi =1, ...,12.

Proof From (5.9) it follows that o (T') is at most countable if and only if ogp(T) =
acco (T) is at most countable. Now the first assertion follows from (5.5) and (5.6).
The second assertion follows from the first one and the fact that o (T') is a finite set if
and only if o, p(T) = acco(T) = 0. O
The Drazin spectrum of T € L(X) is defined as
op(T) ={A € C: T — X is not Drazin invertible}.
Theorem 5.7 Let T € L(X). Then
dop(T) C dopw(T) C dopa(T) C dok(T)

and

nogi(T) = nope(T) = nopw(T) = nop(T).
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Proof From [2, Theorem 2.9] we have op(T) = og:(T) Uinto (T). Now use this
equality and (5.2), and proceed similarly as in the proof of Theorem 5.5. O

The generalized Kato resolvent set of 7 € L(X) is defined by pox(T) =
C\ogk (T). We give an alternative proof of Theorem 3 in [14] based on Theorem 5.5.

Corollary 5.8 ([14], Theorem 3) Let T € L(X) and let pgx (T) has only one com-
ponent. Then

ogk (T) = ogp(T).
Proof Since pg g (T') has only one component, it follows that o, ¢ () has no holes, and
s0 0gk (T) = nogx (T). From (5.6) it follows that o, p(T) D 0k (T) = nogx (T) =

nogp(T) D ogp(T) and hence ogp(T) = ook (T). O

Theorem 5.9 Let T € L(X)and 1 <i < 12. If

dog, (T) C accor,(T), (5.10)

then
0doR,; (T) C oo (T) C ok (T) C oeg (T) C oR;(T) (5.11)

and
nor; (T) = nogx (T) = nog(T) = noek (T). (5.12)

Proof From doR,(T) C accog,(T) it follows that dog, (T) Naccog,(T) = dog, (T),
and so from (5.3) it follows that dog; (T) C ogg (T). (5.12) follows from (5.11) and
5.4). O

Theorem 5.10 Let T € L(X) and 1 <i < 12. If
oR;(T) = doR,;(T) = accog,(T), (5.13)
then
ogk (T) = 0k (T) = 0ok (T) = ogpr,(T) = opR, (T) = oR, (T). (5.14)

Proof Suppose that og, (T) = doR,;(T) and that every A € o, (T) is not isolated in
oR; (T). From Theorem 5.9 it follows that

oR;(T) = doR,(T) C oy (T) C ok(T) C 0ex (T) C oR,;(T),
and so
oR;(T) = 04k (T) = ok;(T) = 0ex (T) = ogpr, (T).

The other cases can be proved analogously. O
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If K C Cis compact, then for A € 9K there is equivalence:
A €accK &< A €accik. (5.15)

Corollary 5.11 Let T € L(X) be an operator for which og,(T) = 90(T), 1 <i <
12, and every A € 0o (T) is not isolated in o (T). Then

ogk (T) = 0k(T) = 0ek (T) = 0gpR,(T) = opR, (T') = og;(T). (5.16)

Proof From og,(T) = 9o (T) it follows that og, (T') = doR,;(T), while from (5.15)
it follows that every A € 9o (T) is not isolated in do (T), i.e. in oR, (7). Therefore,
oR;(T) = dog;(T) = accog,(T) and from Theorem 5.10 we get (5.16). O

Example 5.12 Let U and V be as in Example 3.14. Since o(U) = o(V) = D,
Oap(U) = oau(V) = 0D, 0o(U) = 09, (U) = 0o _(U) = D and og(V) =
09, (V) = 0¢_(V) = 0D, then the conditions of Theorem 5.10, as well Corollary
5.11, are satisfied for i = 1, 2, 3, 10, 11, and hence we get

D = 0k (U) = 0k (U) = ok (U) = 04p(U)
= GgDM(U) = Cyng/\/Jr(U) = ogpo (U) = ogpar_ U) = UgDCD(U)
= opm((U) = opw, (U) = ope, (U) = ope_(U) = ope(U)

and

0D = ok (V) = 0k (V) = 0 (V) = o5 (V)
= 0gpo (V) = ogpyy_ (V) = ogpa_ (V) = ogpe, (V) = ogpa (V)
=opo(V) =opw_(V) =ope_(V) = ope, (V) = oo (V).

Example 5.13 Let T be the unilateral weighted right shift defined on £,(N), 1 < p <
0o, with the weight sequence (w,),eN- Then the spectral radius of T, r(T), is equal
to limy, SupkeN(a)k s a)k+n—1)1/n-

If we suppose that lim,,_, oo infren(wi - - - a)k+n,1)1/” = r(T), then, according
to [23, Proposition 1.6.15], 04p(T) = {A € C : [A] = r(T)}. Thus, 0,,(T) =
004p(T) = acc 04p(T) and from Theorem 5.10 it follows that

ogk (T) = 0k(T) = ok (T) = 04p(U)
= ogp M (U) = ogpyy, (U) = ogpe, (U)
= opm(T) = opw (T) = ope, (T)
={AeC:|x=r(T)}

On the other side, if we suppose that ¢(7") = lim,,_,  inf(w; - - - wp)Y" =0, then
o(T) = D(0,r(T)) (see [1, Corollary 3.118]). For r(T) > 0, in [13, Example 3.14],
it is proved that ogx (T) = o (T). It implies that ok, (T) = ogpr,(T) = opR, (T) =
o(T),1 <i<I12.
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